2024-07-12
Solutions to Principles of Quantum Mechanics
00

目录

Chapter 2 Review of Classical Mechanics
2.1 The Principle of Least Action and Lagrangian Mechanics
2.2 The Electromagnetic Lagrangian
2.3 The Two Body Problem
2.4 How Smart Is a Particle?
2.5 The Hamiltonian Formalism
2.6 The Electromagnetic Force in the Hamiltonian Scheme
2.7 Cyclic Coordinates, Poisson Brackets, and Canonical Transformations
2.8 Symmetries and Their Consequences

Chapter 2 Review of Classical Mechanics

2.1 The Principle of Least Action and Lagrangian Mechanics

Exercise 2.1.1 Consider the following system, called a harmonic oscillator. The block has a mass mm and lies on a frictionless surface. The spring has a force constant kk. Write the Lagrangian and get the equation of motion.

Solution. The kinetic energy and potential energy are

T=12mx˙2V=12kx2\begin{aligned} T&=\frac{1}{2}m\dot{x}^{2}\\ V&=\frac{1}{2}kx^{2} \end{aligned}

Then the Lagrangian is

L=TV=12mx˙212kx2\mathscr{L}=T-V=\frac{1}{2}m\dot{x}^{2}-\frac{1}{2}kx^{2}

We can compute

Lx˙=mx˙Lx=kx\begin{aligned} \frac{\partial\mathscr{L}}{\partial \dot{x}}&=m\dot{x}\\ \frac{\partial \mathscr{L}}{\partial x}&=-kx \end{aligned}

Therefore, the Euler-Lagrange equation is

ddt(Lx˙)Lx=0\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathscr{L}}{\partial\dot{x}}\right)-\frac{\partial\mathscr{L}}{\partial x}=0

The equation of motion is

mx¨+kx=0m\ddot{x}+kx=0
 ~\tag*{$\blacksquare$}

Exercise 2.1.2 Do the same for the coupled-mass problem discussed at the end of Section 1.8. Compare the equations of motion with Eqs. (1.8.24) and (1.8.25).

Solution. The kinetic energy and potential energy of the system are

T=12mx˙12+12mx˙22V=12kx2+12k(x2x1)2+12kx22\begin{aligned} T&=\frac{1}{2}m\dot{x}_{1}^{2}+\frac{1}{2}m\dot{x}_{2}^{2}\\ V&=\frac{1}{2}kx^{2}+\frac{1}{2}k(x_{2}-x_{1})^{2}+\frac{1}{2}kx_{2}^{2} \end{aligned}

Then the Lagrangian is

L=TV=12m(x˙12+x˙22)k(x12x1x2+x22)\mathscr{L}=T-V=\frac{1}{2}m(\dot{x}_{1}^{2}+\dot{x}_{2}^{2})-k(x_{1}^{2}-x_{1}x_{2}+x_{2}^{2})
  • The Euler-Lagrange equation of 11:
Lx˙1=mx˙1Lx1=2kx1+kx2\begin{aligned} \frac{\partial\mathscr{L}}{\partial \dot{x}_{1}}&=m\dot{x}_{1}\\ \frac{\partial \mathscr{L}}{\partial x_{1}}&=-2kx_{1}+kx_{2} \end{aligned}
ddt(Lx˙1)Lx1=0\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathscr{L}}{\partial\dot{x}_{1}}\right)-\frac{\partial\mathscr{L}}{\partial x_{1}}=0

We get equation of motion

mx¨1+2kx1kx2=0m\ddot{x}_{1}+2kx_{1}-kx_{2}=0

x¨1=2kmx1+kmx2(2.1)\ddot{x}_{1}=-\frac{2k}{m}x_{1}+\frac{k}{m}x_{2}\tag{2.1}
  • The Euler-Lagrange equation of 22:
Lx˙2=mx˙2Lx1=kx12kx2\begin{aligned} \frac{\partial\mathscr{L}}{\partial \dot{x}_{2}}&=m\dot{x}_{2}\\ \frac{\partial \mathscr{L}}{\partial x_{1}}&=kx_{1}-2kx_{2} \end{aligned}
ddt(Lx˙2)Lx2=0\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathscr{L}}{\partial\dot{x}_{2}}\right)-\frac{\partial\mathscr{L}}{\partial x_{2}}=0

We get equation of motion

mx¨2kx1+2kx2=0m\ddot{x}_{2}-kx_{1}+2kx_{2}=0

x¨2=kmx12kmx2(2.2)\ddot{x}_{2}=\frac{k}{m}x_{1}-\frac{2k}{m}x_{2}\tag{2.2}

(2.1) and (2.2) are the same as Eqs. (1.8.24) and (1.8.25).

 ~\tag*{$\blacksquare$}

Exercise 2.1.3 A particle of mass mm moves in three dimensions under a potential V(r,θ,ϕ)=V(r)V(r,\theta,\phi)=V(r). Write its L\mathscr{L} and find the equations of motions.

Solution. The kinetic energy and potential energy are

T=12m(r˙2+r2θ˙2+r2sin2θϕ˙2)V=V(r)\begin{aligned} T&=\frac{1}{2}m(\dot{r}^{2}+r^{2}\dot{\theta}^{2}+r^{2}\sin^{2}\theta\dot{\phi}^{2})\\ V&=V(r) \end{aligned}

Then the Lagrangian is

L=TV=12m(r˙2+r2θ˙2+r2sin2θϕ˙2)V(r)\mathscr{L}=T-V=\frac{1}{2}m(\dot{r}^{2}+r^{2}\dot{\theta}^{2}+r^{2}\sin^{2}\theta\dot{\phi}^{2})-V(r)
  • Euler-Lagrange equation of rr:
Lr˙=mr˙,Lr=mrθ˙2+mrsin2θϕ˙2V(r)r\frac{\partial \mathscr{L}}{\partial \dot{r}}=m\dot{r},\quad \frac{\partial \mathscr{L}}{\partial r}=mr\dot{\theta}^{2}+mr\sin^{2}\theta\,\dot{\phi}^{2}-\frac{\partial V(r)}{r}
ddt(Lr˙)Lr=0\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathscr{L}}{\partial\dot{r}}\right)-\frac{\partial\mathscr{L}}{\partial r}=0

The equation of motion is

mr¨mrθ˙2mrsin2θϕ˙2+V(r)r=0m\ddot{r}-mr\dot{\theta}^{2}-mr\sin^{2}\theta\,\dot{\phi}^{2}+\frac{\partial V(r)}{\partial r}=0
  • Euler-Lagrange equation of θ\theta:
Lθ˙=mr2θ˙,θr=mr2sinθcosθϕ˙2\frac{\partial \mathscr{L}}{\partial \dot{\theta}}=mr^{2}\dot{\theta},\quad \frac{\partial \mathscr{\theta}}{\partial r}=mr^{2}\sin\theta\cos\theta\,\dot{\phi}^{2}
ddt(Lθ˙)Lθ=0\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathscr{L}}{\partial\dot{\theta}}\right)-\frac{\partial\mathscr{L}}{\partial \theta}=0

The equation of motion is

mr2θ¨+2mrr˙θ˙mr2sinθcosθϕ˙2=0mr^{2}\ddot{\theta}+2mr\dot{r}\dot{\theta}-mr^{2}\sin\theta\cos\theta\,\dot{\phi}^{2}=0
  • Euler-Lagrange equation of ϕ\phi:
Lϕ˙=mr2sin2θϕ˙,Lϕ=0\frac{\partial \mathscr{L}}{\partial \dot{\phi}}=mr^{2}\sin^{2}\theta\dot{\phi},\quad \frac{\partial \mathscr{L}}{\partial \phi}=0
ddt(Lr˙)Lr=0\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial \mathscr{L}}{\partial\dot{r}}\right)-\frac{\partial\mathscr{L}}{\partial r}=0

The equation of motion is

ddt(mr2sin2θϕ˙)=0mr2sin2θϕ˙=lϕ˙=lmr2sin2θ\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}(mr^{2}\sin^{2}\theta\,\dot{\phi})&=0\\ mr^{2}\sin^{2}\theta\,\dot{\phi}&=l\\ \dot{\phi}&=\frac{l}{mr^{2}\sin^{2}\theta} \end{aligned}

where ll is a contant.

 ~\tag*{$\blacksquare$}

2.2 The Electromagnetic Lagrangian

2.3 The Two Body Problem

Exercise 2.3.1 Derive Eq. (2.3.6) from (2.3.5) by changing variables.

Solution. Since

r1=rCM+m2rm1+m2r˙1=r˙CM+m2r˙m1+m2r2=rCMm1rm1+m2r˙2=r˙CMm1r˙m1+m2\begin{aligned} \mathbf{r}_1=\mathbf{r}_{\mathrm{CM}}+\frac{m_2 \mathbf{r}}{m_1+m_2}\quad & \quad \dot{\mathbf{r}}_1=\dot{\mathbf{r}}_{\mathrm{CM}}+\frac{m_2 \dot{\mathbf{r}}}{m_1+m_2} \\ \mathbf{r}_2=\mathbf{r}_{\mathrm{CM}}-\frac{m_1 \mathbf{r}}{m_1+m_2}\quad &\quad \dot{\mathbf{r}}_2=\dot{\mathbf{r}}_{\mathrm{CM}}-\frac{m_1 \dot{\mathbf{r}}}{m_1+m_2} \end{aligned}

The Lagrangian becomes

L=12m1r˙12+12m2r˙22V(r1r2)=12m1(r˙CM+m2r˙m1+m2)2+12m2(r˙CMm1r˙m1+m2)2V(r)=12m1r˙CM2+12m1m22(m1+m2)2r˙2+12m2r˙CM2+12m2m12(m1+m2)2r˙2V(r)=12(m1+m2)r˙CM2+12m1m2(m1+m2)(m1+m2)2r˙2V(r)=12(m1+m2)r˙CM2+12m1m2m1+m2r˙2V(r)\begin{aligned} \mathscr{L}&=\frac{1}{2} m_{1}\left|\dot{\mathbf{r}}_1\right|^2+\frac{1}{2} m_2\left|\dot{\mathbf{r}}_2\right|^2-V(\mathbf{r}_1-\mathbf{r}_2)\\ &=\frac{1}{2} m_1\left(\dot{\mathbf{r}}_{\mathrm{CM}}+\frac{m_2 \dot{\mathbf{r}}}{m_1+m_2}\right)^{2}+\frac{1}{2}m_{2}\left(\dot{\mathbf{r}}_{\mathrm{CM}}-\frac{m_1 \dot{\mathbf{r}}}{m_1+m_2}\right)^{2}-V(\mathbf{r})\\ &=\frac{1}{2} m_1|\dot{\mathbf{r}}_{\mathrm{CM}}|^{2}+\frac{1}{2}\frac{m_{1}m_2^{2}}{\left(m_1+m_2\right)^{2}}|\dot{\mathbf{r}}|^{2}+\frac{1}{2} m_2|\dot{\mathbf{r}}_{\mathrm{CM}}|^{2}+\frac{1}{2}\frac{m_{2}m_1^{2}}{\left(m_1+m_2\right)^{2}}|\dot{\mathbf{r}}|^{2}-V(\mathbf{r})\\ &=\frac{1}{2}(m_{1}+m_{2})|\dot{\mathbf{r}}_{\mathrm{CM}}|^{2}+\frac{1}{2}\frac{m_{1}m_{2}(m_{1}+m_{2})}{(m_{1}+m_{2})^{2}}|\dot{\mathbf{r}}|^{2}-V(\mathbf{r})\\ &=\frac{1}{2}(m_{1}+m_{2})|\dot{\mathbf{r}}_{\mathrm{CM}}|^{2}+\frac{1}{2}\frac{m_{1}m_{2}}{m_{1}+m_{2}}|\dot{\mathbf{r}}|^{2}-V(\mathbf{r}) \end{aligned}
 ~\tag*{$\blacksquare$}

2.4 How Smart Is a Particle?

2.5 The Hamiltonian Formalism

Exercise 2.5.1 Show that if T=ijTij(q)q˙iq˙jT=\sum\limits_i \sum\limits_j T_{i j}(q) \dot{q}_i \dot{q}_j, where q˙\dot{q}'s are generalized velocities, ipiq˙i=2T\sum\limits_i p_i \dot{q}_i=2 T.

Solution.

ps=Tq˙s=ijTij(q)q˙iδjs+ijTij(q)δisq˙j=iTis(q)q˙i+jTsj(q)q˙j\begin{aligned} p_{s}&=\frac{\partial T}{\partial \dot{q}_{s}}\\ &=\sum_{i}\sum_{j}T_{ij}(q)\dot{q}_{i}\delta_{js}+\sum_{i}\sum_{j}T_{ij}(q)\delta_{is}\dot{q}_{j}\\ &=\sum_{i}T_{is}(q)\dot{q}_{i}+\sum_{j}T_{sj}(q)\dot{q}_{j} \end{aligned}

Therefore,

spsq˙s=iTis(q)q˙iq˙s+jTsj(q)q˙jq˙s=T+T=2T\begin{aligned} \sum_{s}p_{s}\dot{q}_{s}&=\sum_{i}T_{is}(q)\dot{q}_{i}\dot{q}_{s}+\sum_{j}T_{sj}(q)\dot{q}_{j}\dot{q}_{s}\\ &=T+T\\ &=2T \end{aligned}
 ~\tag*{$\blacksquare$}

Exercise 2.5.2 Using the conservation of energy, show that the trajectories in phase space for the oscillator are ellipses of the form (x/a)2+(p/b)2=1(x / a)^2+(p / b)^2=1, where a2=2E/ka^2=2 E / k and b2=b^2= 2mE2 m E.

Solution. The Lagrangian is

L=12mx˙212kx2\mathscr{L}=\frac{1}{2}m\dot{x}^{2}-\frac{1}{2}kx^{2}

So the momentum is

p=Lx˙=mx˙p=\frac{\partial \mathscr{L}}{\partial \dot{x}}=m\dot{x}

Hamiltonian is

H=px˙L=p22m+12kx2\mathscr{H}=p\dot{x}-\mathscr{L}=\frac{p^{2}}{2m}+\frac{1}{2}kx^{2}

Since L\mathscr{L} is not an explicit function of tt, H\mathscr{H} is conservative. Set H=E\mathscr{H}=E, where EE is a constant, we have

12kx2+p22m=E\frac{1}{2}kx^{2}+\frac{p^{2}}{2m}=E

If we denote a2=2E/ka^{2}=2E/k and b2=2mEb^{2}=2mE, we have

(xa)2+(pb)2=1\left(\frac{x}{a}\right)^{2}+\left(\frac{p}{b}\right)^{2}=1
 ~\tag*{$\blacksquare$}

Exercise 2.5.3 Solve Exercise 2.1.2 using the Hamiltonian formalism.

Solution. Start from Lagrangian of the system

L=12m(x˙12+x˙22)k(x12+x22x1x2)\mathscr{L}=\frac{1}{2}m(\dot{x}_{1}^{2}+\dot{x}_{2}^{2})-k(x_{1}^{2}+x_{2}^{2}-x_{1}x_{2})

Then the momenta are

p1=Lx˙1=mx˙1x˙1=p1mp2=Lx˙2=mx˙2x˙2=p2m\begin{aligned} p_{1}&=\frac{\partial \mathscr{L}}{\partial \dot{x}_{1}}=m\dot{x}_{1}\quad \Rightarrow \quad \dot{x}_{1}=\frac{p_{1}}{m}\\ p_{2}&=\frac{\partial \mathscr{L}}{\partial \dot{x}_{2}}=m\dot{x}_{2}\quad \Rightarrow \quad \dot{x}_{2}=\frac{p_{2}}{m} \end{aligned}

Then the Hamiltonian of the system is

H=p1x˙1+p2x˙2L=p12m+p22mp122mp222m+k(x12+x22x1x2)=p122m+p222m+k(x12+x22x1x2)\begin{aligned} \mathscr{H}&=p_{1}\dot{x}_{1}+p_{2}\dot{x}_{2}-\mathscr{L}\\ &=\frac{p_{1}^{2}}{m}+\frac{p_{2}^{2}}{m}-\frac{p_{1}^{2}}{2m}-\frac{p_{2}^{2}}{2m}+k(x_{1}^{2}+x_{2}^{2}-x_{1}x_{2})\\ &=\frac{p_{1}^{2}}{2m}+\frac{p_{2}^{2}}{2m}+k(x_{1}^{2}+x_{2}^{2}-x_{1}x_{2}) \end{aligned}
  • Hamilton's canonical equations of 11:
{x˙1=Hp1=p1mp˙1=Hx1=2kx1+kx2\left\{\begin{aligned} \dot{x}_{1}&=\frac{\partial\mathscr{H}}{\partial p_{1}}=\frac{p_{1}}{m}\\ \dot{p}_{1}&=-\frac{\partial\mathscr{H}}{\partial x_{1}}=-2kx_{1}+kx_{2} \end{aligned}\right.

From the first equation, we know p1=mx˙1p_{1}=m\dot{x}_{1}. Take the time derivative on the both side, we get p˙1=mx¨1\dot{p}_{1}=m\ddot{x}_{1}. Substitute it into the second equation, we get

mx¨1=2kx1+kx2x¨1=2kmx1+kmx2\begin{aligned} m\ddot{x}_{1}&=-2kx_{1}+kx_{2}\\ \ddot{x}_{1}&=-\frac{2k}{m}x_{1}+\frac{k}{m}x_{2} \end{aligned}
  • Hamilton's canonical equations of 22:
{x˙2=Hp2=p2mp˙2=Hx2=2kx2+kx1\left\{\begin{aligned} \dot{x}_{2}&=\frac{\partial\mathscr{H}}{\partial p_{2}}=\frac{p_{2}}{m}\\ \dot{p}_{2}&=-\frac{\partial\mathscr{H}}{\partial x_{2}}=-2kx_{2}+kx_{1} \end{aligned}\right.

From the first equation, we know p2=mx˙2p_{2}=m\dot{x}_{2}. Take the time derivative on the both side, we get p˙2=mx¨2\dot{p}_{2}=m\ddot{x}_{2}. Substitute it into the second equation, we get

mx¨2=2kx2+kx1x¨2=kmx12kmx2\begin{aligned} m\ddot{x}_{2}&=-2kx_{2}+kx_{1}\\ \ddot{x}_{2}&=\frac{k}{m}x_{1}-\frac{2k}{m}x_{2} \end{aligned}
 ~\tag*{$\blacksquare$}

Exercise 2.5.4 Show that H\mathscr{H} corresponding to L\mathscr{L} in Eq. (2.3.6) is H=pCM2/2M+p2/\mathscr{H}=\left|\mathbf{p}_{\mathrm{CM}}\right|^2 / 2 M+|\mathbf{p}|^2 / 2μ+V(r)2 \mu+V(\mathbf{r}), where MM is the total mass, μ\mu is the reduced mass, pCM\mathbf{p}_{\mathrm{CM}} and p\mathbf{p} are the momenta conjugate to rCM\mathbf{r}_{\mathrm{CM}} and r\mathbf{r}, respectively.

Solution. Start from Lagrangian

L=12(m1+m2)r˙CM2+12m1m2m1+m2r˙2V(r)=12Mr˙CM2+12μr˙2V(r)\begin{aligned} \mathscr{L}&=\frac{1}{2}(m_{1}+m_{2})|\dot{\mathbf{r}}_{\mathrm{CM}}|^{2}+\frac{1}{2}\frac{m_{1}m_{2}}{m_{1}+m_{2}}|\dot{\mathbf{r}}|^{2}-V(\mathbf{r})\\ &=\frac{1}{2}M|\dot{\mathbf{r}}_{\mathrm{CM}}|^{2}+\frac{1}{2}\mu|\dot{\mathbf{r}}|^{2}-V(\mathbf{r}) \end{aligned}

where total mass M=m1+m2M=m_{1}+m_{2} and reduced mass μ=m1m2m1+m2\mu=\frac{m_{1}m_{2}}{m_{1}+m_{2}}. Then the momenta satisfy

pCM=Lr˙CM=Mr˙CMr˙CM=pCMMp=Lr˙=μr˙r˙=pμ\begin{aligned} |\mathbf{p}_{\mathrm{CM}}|&=\frac{\partial \mathscr{L}}{\partial |\dot{\mathbf{r}}_{\mathrm{CM}}|}=M|\dot{\mathbf{r}}_{\mathrm{CM}}|\quad &\Rightarrow& \quad |\dot{\mathbf{r}}_{\mathrm{CM}}|=\frac{|\mathbf{p}_{\mathrm{CM}}|}{M}\\ |\mathbf{p}|&=\frac{\partial \mathscr{L}}{\partial |\dot{\mathbf{r}}|}=\mu|\dot{\mathbf{r}}|\quad &\Rightarrow& \quad |\dot{\mathbf{r}}|=\frac{|\mathbf{p}|}{\mu} \end{aligned}

Therefore the Hamiltonian is

H=pCMr˙CM+pr˙L=pCMr˙CM+pr˙12Mr˙CM212μr˙2+V(r)=pCM2M+p2μ12MpCM2M212μp2μ2+V(r)=pCM22M+p22μ+V(r)\begin{aligned} \mathscr{H}&=\mathbf{p}_{\mathrm{CM}}\cdot \dot{\mathbf{r}}_{\mathrm{CM}}+\mathbf{p}\cdot\dot{\mathbf{r}}-\mathscr{L}\\ &=|\mathbf{p}_{\mathrm{CM}}||\dot{\mathbf{r}}_{\mathrm{CM}}|+|\mathbf{p}||\dot{\mathbf{r}}|-\frac{1}{2}M|\dot{\mathbf{r}}_{\mathrm{CM}}|^{2}-\frac{1}{2}\mu|\dot{\mathbf{r}}|^{2}+V(\mathbf{r})\\ &=\frac{|\mathbf{p}_{\mathrm{CM}}|^{2}}{M}+\frac{|\mathbf{p}|^{2}}{\mu}-\frac{1}{2}M\frac{|\mathbf{p}_{\mathrm{CM}}|^{2}}{M^{2}}-\frac{1}{2}\mu\frac{|\mathbf{p}|^{2}}{\mu^{2}}+V(\mathbf{r})\\ &=\frac{|\mathbf{p}_{\mathrm{CM}}|^{2}}{2M}+\frac{|\mathbf{p}|^{2}}{2\mu}+V(\mathbf{r}) \end{aligned}
 ~\tag*{$\blacksquare$}

2.6 The Electromagnetic Force in the Hamiltonian Scheme

2.7 Cyclic Coordinates, Poisson Brackets, and Canonical Transformations

Exercise 2.7.1 Show that

{ω,λ}={λ,ω}{ω,λ+σ}={ω,λ}+{ω,σ}{ω,λσ}={ω,λ}σ+λ{ω,σ}\begin{gathered} \{\omega, \lambda\}=-\{\lambda, \omega\} \\ \{\omega, \lambda+\sigma\}=\{\omega, \lambda\}+\{\omega, \sigma\} \\ \{\omega, \lambda \sigma\}=\{\omega, \lambda\} \sigma+\lambda\{\omega, \sigma\} \end{gathered}

Note the similarity between the above and Eqs. (1.5.10) and (1.5.11) for commutators.

Solution.

{ω,λ}=i(ωqiλpiωpiλqi)=i(λqiωpiλpiωqi)={λ,ω}\{\omega, \lambda\}=\sum_i\left(\frac{\partial \omega}{\partial q_i} \frac{\partial \lambda}{\partial p_i}-\frac{\partial \omega}{\partial p_i} \frac{\partial \lambda}{\partial q_i}\right)=-\sum_i\left(\frac{\partial \lambda}{\partial q_i} \frac{\partial \omega}{\partial p_i}-\frac{\partial \lambda}{\partial p_i} \frac{\partial \omega}{\partial q_i}\right)=-\{\lambda, \omega\}
{ω,λ+σ}=i(ωqi(λ+σ)piωpi(λ+σ)qi)=i[ωqi(λpi+σpi)ωpi(λqi+σqi)]=i[(ωqiλpiωpiλqi)+(ωqiσpiωpiσqi)]=i(ωqiλpiωpiλqi)+i(ωqiσpiωpiσqi)={ω,λ}+{ω,σ}\begin{aligned} \{\omega, \lambda+\sigma\} & =\sum_i\left(\frac{\partial \omega}{\partial q_i} \cdot \frac{\partial(\lambda+\sigma)}{\partial p_i}-\frac{\partial \omega}{\partial p_i} \cdot \frac{\partial(\lambda+\sigma)}{\partial q_i}\right) \\ & =\sum_i\left[\frac{\partial \omega}{\partial q_i} \cdot\left(\frac{\partial \lambda}{\partial p_i}+\frac{\partial \sigma}{\partial p_i}\right)-\frac{\partial \omega}{\partial p_i} \cdot\left(\frac{\partial \lambda}{\partial q_i}+\frac{\partial \sigma}{\partial q_i}\right)\right] \\ & =\sum_i\left[\left(\frac{\partial \omega}{\partial q_i} \frac{\partial \lambda}{\partial p_i}-\frac{\partial \omega}{\partial p_i} \frac{\partial \lambda}{\partial q_i}\right)+\left(\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial p_i}-\frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial q_i}\right)\right] \\ & =\sum_i\left(\frac{\partial \omega}{\partial q_i} \frac{\partial \lambda}{\partial p_i}-\frac{\partial \omega}{\partial p_i}\frac{\partial \lambda}{\partial q_{i}}\right)+\sum_i\left(\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial p_i}-\frac{\partial \omega}{\partial p_i}\frac{\partial \sigma}{\partial q_{i}}\right) \\ & =\{\omega, \lambda\}+\{\omega, \sigma\} \end{aligned}
{ω,λσ}=i[ωqi(λσ)piωpi(λσ)qi]=i[λωqiσpi+ωqiλpiσλωpiσqiωpiλqiσ]=λi(ωqiσpiωpiσqi)+i(ωqiλpiωpiλqi)σ=λ{ω,σ}+{ω,λ}σ.\begin{aligned} \{\omega, \lambda \sigma\} & =\sum_i\left[\frac{\partial \omega}{\partial q_i} \frac{\partial(\lambda \sigma)}{\partial p_i}-\frac{\partial \omega}{\partial p_i} \cdot \frac{\partial(\lambda \sigma)}{\partial q_i}\right] \\ & =\sum_i\left[\lambda \frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial p_i}+\frac{\partial \omega}{\partial q_i} \frac{\partial \lambda}{\partial p_i}\sigma-\lambda \frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial q_i}-\frac{\partial \omega}{\partial p_i} \frac{\partial \lambda}{\partial q_i} \sigma\right] \\ & =\lambda \sum_i\left(\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial p_i}-\frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial q_i}\right)+\sum_i\left(\frac{\partial \omega}{\partial q_i} \frac{\partial \lambda}{\partial p_i}-\frac{\partial \omega}{\partial p_i} \frac{\partial \lambda}{\partial q_i}\right) \sigma \\ & =\lambda\{\omega, \sigma\}+\{\omega, \lambda\} \sigma . \end{aligned}
 ~\tag*{$\blacksquare$}

Exercise 2.7.2 (i) Verify Eqs. (2.7.4) and (2.7.5). (ii) Consider a problem in two dimensions given by H=px2+py2+ax2+by2\mathscr{H}=p_x^2+p_y^2+a x^2+b y^2. Argue that if a=b,{lz,H}a=b,\left\{l_z, \mathscr{H}\right\} must vanish. Verify by explicit computation.

Solution.

(i)

{qi,qj}:=k(qiqkqjpkqipkqjqk)=k(qiqk00qjqk)=0{pi,pj}:=k(piqkpjpkpipkpjqk)=k(0pjpkpipk0)=0{qi,pj}:=k(qiqkpjpkqipkpjqk)=k(δikδjk00)=δij\begin{aligned} \left\{q_i, q_j\right\} & :=\sum_k\left(\frac{\partial q_i}{\partial q_k} \cdot \frac{\partial q_j}{\partial p_k}-\frac{\partial q_i}{\partial p_k} \cdot \frac{\partial q_j}{\partial q_k}\right)=\sum_k\left(\frac{\partial q_i}{\partial q_k} \cdot 0-0 \cdot \frac{\partial q_j}{\partial q_k}\right)=0 \\ \left\{p_i, p_j\right\} & :=\sum_k\left(\frac{\partial p_i}{\partial q_k} \cdot \frac{\partial p_j}{\partial p_k}-\frac{\partial p_i}{\partial p_k} \cdot \frac{\partial p_j}{\partial q_k}\right)=\sum_k\left(0 \cdot \frac{\partial p_j}{\partial p_k}-\frac{\partial p_i}{\partial p_k} \cdot 0\right)=0 \\ \left\{q_i, p_j\right\} & :=\sum_k\left(\frac{\partial q_i}{\partial q_k} \cdot \frac{\partial p_j}{\partial p_k}-\frac{\partial q_i}{\partial p_k} \cdot \frac{\partial p_j}{\partial q_k}\right)=\sum_k\left(\delta_{i k} \delta_{j k}-0 \cdot 0\right)=\delta_{i j} \end{aligned}

and

{qi,H}:=k(qiqkHpkqipkHqk)=k(δikHpk0Hqk)=Hpi=q˙i{pi,H}:=k(piqkHpkpipkHqk)=k(0HpkδikHqk)=Hqi=p˙i\begin{aligned} \left\{q_i, \mathscr{H}\right\} & :=\sum_k\left(\frac{\partial q_i}{\partial q_k} \cdot \frac{\partial \mathscr{H}}{\partial p_k}-\frac{\partial q_i}{\partial p_k} \cdot \frac{\partial \mathscr{H}}{\partial q_k}\right)=\sum_k\left(\delta_{i k} \cdot \frac{\partial \mathscr{H}}{\partial p_k}-0 \cdot \frac{\partial \mathscr{H}}{\partial q_k}\right)\\ &=\frac{\partial \mathscr{H}}{\partial p_i}=\dot{q}_i \\ \left\{p_i, \mathscr{H}\right\} & :=\sum_k\left(\frac{\partial p_i}{\partial q_k} \cdot \frac{\partial \mathscr{H}}{\partial p_k}-\frac{\partial p_i}{\partial p_k} \cdot \frac{\partial \mathscr{H}}{\partial q_k}\right)=\sum_k\left(0 \cdot \frac{\partial \mathscr{H}}{\partial p_k}-\delta_{i k} \cdot \frac{\partial \mathscr{H}}{\partial q_k}\right)\\ &=-\frac{\partial \mathscr{H}}{\partial q_i}=\dot{p}_i \end{aligned}

(ii) The Hamiltonian given is H=px2+py2+ax2+by2\mathscr{H}=p_{x}^{2}+p_{y}^{2}+ax^{2}+by^{2}. If a=ba=b, H\mathscr{H} has a symmetry under simultaneous rotations in the xyx-y and pxpyp_{x}-p_{y} planes, under which lzl_{z} (the generator) is conserved. Therefore, {lz,H}=0\{l_{z},\mathscr{H}\}=0. We check this as follows:

{lz,H}=k(lzqkHpklzpkHqk)=lzxHpx+lzyHpylzpxHxlzpyHy\begin{aligned} \left\{l_z, \mathscr{H}\right\}&=\sum_k\left(\frac{\partial l_z}{\partial q_k} \cdot \frac{\partial \mathscr{H}}{\partial p_k}-\frac{\partial l_z}{\partial p_k} \cdot \frac{\partial \mathscr{H}}{\partial q_k}\right)\\ &=\frac{\partial l_z}{\partial x} \cdot \frac{\partial \mathscr{H}}{\partial p_x}+\frac{\partial l_z}{\partial y} \cdot \frac{\partial \mathscr{H}}{\partial p_y}-\frac{\partial l_z}{\partial p_x} \cdot \frac{\partial \mathscr{H}}{\partial x}-\frac{\partial l_z}{\partial p_y} \cdot \frac{\partial \mathscr{H}}{\partial y} \end{aligned}

But

Hpk=2pk,lzpk=(xpyypx)pk=(lzpx,lzpy)=(y,x),Hxk=(Hx,Hy)=(2ax,2by),lzqk=(lzx,lzy)=(py,px)\begin{aligned} \frac{\partial \mathscr{H}}{\partial p_k}&=2 p_k, \quad \frac{\partial l_z}{\partial p_k}=\frac{\partial\left(x p_y-y p_x\right)}{\partial p_k}=\left(\frac{\partial l_z}{\partial p_x}, \frac{\partial l_z}{\partial p_y}\right)=(-y, x), \\ \frac{\partial \mathscr{H}}{\partial x_k}&=\left(\frac{\partial \mathscr{H}}{\partial x}, \frac{\partial \mathscr{H}}{\partial y}\right)=(2 a x, 2 b y),\quad \frac{\partial l_z}{\partial q_k}=\left(\frac{\partial l_z}{\partial x}, \frac{\partial l_z}{\partial y}\right)=\left(p_y,-p_x\right) \end{aligned}

So

{lz,H}=py2px+(px)2py(y)2axx2by=2xy(ab)\left\{l_z, \mathscr{H}\right\}=p_y \cdot 2 p_x+\left(-p_x\right) \cdot 2 p_y-(-y) \cdot 2 a x-x \cdot 2 b y=2 x y(a-b)

which vanishes if a=ba=b.

 ~\tag*{$\blacksquare$}

Exercise 2.7.3 Fill in the missing steps leading to Eq. (2.7.18) starting from Eq. (2.7.14).

Solution. Consider the following transformations:

qˉi=qˉi(q,p)pˉi=pˉi(q,p)\begin{aligned} \bar{q}_{i}&=\bar{q}_{i}(q,p)\\ \bar{p}_{i}&=\bar{p}_{i}(q,p) \end{aligned}

If this transformation is canonical, then the variables qˉi\bar{q}_{i} and pˉi\bar{p}_{i} satisfy Hamilton's equation:

qˉ˙i=Hpˉipˉ˙i=Hqˉi\begin{aligned} \dot{\bar{q}}_{i}&=\frac{\partial\mathscr{H}}{\partial \bar{p}_{i}}\\ \dot{\bar{p}}_{i}&=-\frac{\partial\mathscr{H}}{\partial \bar{q}_{i}} \end{aligned}

If we write Hamiltonian H\mathscr{H} as a function of new variables, we can get partial derivatives

H(qˉ,pˉ)pi=k(Hqˉkqˉkpi+Hpˉkpˉkpi)H(qˉ,pˉ)qi=k(Hqˉkqˉkqi+Hpˉkpˉkqi)\begin{aligned} \frac{\partial \mathscr{H}(\bar{q},\bar{p})}{\partial p_{i}}&=\sum_{k}\left(\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\frac{\partial \bar{q}_{k}}{\partial p_{i}}+\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\frac{\partial \bar{p}_{k}}{\partial p_{i}}\right)\\ \frac{\partial \mathscr{H}(\bar{q},\bar{p})}{\partial q_{i}}&=\sum_{k}\left(\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\frac{\partial \bar{q}_{k}}{\partial q_{i}}+\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\frac{\partial \bar{p}_{k}}{\partial q_{i}}\right) \end{aligned}

The time derivative of any function ω\omega can be written as a Poisson bracket with Hamiltonian H\mathscr{H}:

ω˙={ω,H}\dot{\omega}=\{\omega,\mathscr{H}\}

Therefore, for transformed velocities, we have

qˉ˙j={qˉj,H}=i(qˉjqiHpiqˉjpiHqi)=ik[qˉjqi(Hqˉkqˉkpi+Hpˉkpˉkpi)qˉjpi(Hqˉkqˉkqi+Hpˉkpˉkqi)]=kHqˉki(qˉjqiqˉkpiqˉjpiqˉkqi)+kHpˉki(qˉjqipˉkpiqˉjpipˉkqi)=kHqˉk{qˉj,qˉk}+kHpˉk{qˉj,pˉk}\begin{aligned} \dot{\bar{q}}_{j}&=\{\bar{q}_{j},\mathscr{H}\}\\ &=\sum_{i}\left(\frac{\partial \bar{q}_j}{\partial q_i} \frac{\partial \mathscr{H}}{\partial p_i}-\frac{\partial \bar{q}_j}{\partial p_i} \frac{\partial \mathscr{H}}{\partial q_i}\right)\\ &=\sum_{i}\sum_{k}\left[\frac{\partial \bar{q}_j}{\partial q_i}\left(\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\frac{\partial \bar{q}_{k}}{\partial p_{i}}+\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\frac{\partial \bar{p}_{k}}{\partial p_{i}}\right)-\frac{\partial \bar{q}_j}{\partial p_i}\left(\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\frac{\partial \bar{q}_{k}}{\partial q_{i}}+\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\frac{\partial \bar{p}_{k}}{\partial q_{i}}\right)\right]\\ &=\sum_{k}\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\sum_{i}\left(\frac{\partial \bar{q}_j}{\partial q_i}\frac{\partial \bar{q}_{k}}{\partial p_{i}}-\frac{\partial \bar{q}_j}{\partial p_i}\frac{\partial \bar{q}_{k}}{\partial q_{i}}\right)+\sum_{k}\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\sum_{i}\left(\frac{\partial \bar{q}_j}{\partial q_i}\frac{\partial \bar{p}_{k}}{\partial p_{i}}-\frac{\partial \bar{q}_j}{\partial p_i}\frac{\partial \bar{p}_{k}}{\partial q_{i}}\right)\\ &=\sum_{k}\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\{\bar{q}_{j},\bar{q}_{k}\}+\sum_{k}\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\{\bar{q}_{j},\bar{p}_{k}\} \end{aligned}

In order to satisfy Hamilton's equation, we must have

{qˉj,qˉk}=0{qˉj,pˉk}=δjk\begin{aligned} \{\bar{q}_{j},\bar{q}_{k}\}&=0\\ \{\bar{q}_{j},\bar{p}_{k}\}&=\delta_{jk} \end{aligned}

We could do the same calculation for the time derivative of transform momentum

pˉ˙j={pˉj,H}=i(pˉjqiHpipˉjpiHqi)=ik[pˉjqi(Hqˉkqˉkpi+Hpˉkpˉkpi)pˉjpi(Hqˉkqˉkqi+Hpˉkpˉkqi)]=kHqˉki(pˉjqiqˉkpipˉjpiqˉkqi)+kHpˉki(pˉjqipˉkpipˉjpipˉkqi)=kHqˉk{pˉj,qˉk}+kHpˉk{pˉj,pˉk}\begin{aligned} \dot{\bar{p}}_{j}&=\{\bar{p}_{j},\mathscr{H}\}\\ &=\sum_{i}\left(\frac{\partial \bar{p}_{j}}{\partial q_i} \frac{\partial \mathscr{H}}{\partial p_i}-\frac{\partial \bar{p}_{j}}{\partial p_i} \frac{\partial \mathscr{H}}{\partial q_i}\right)\\ &=\sum_{i}\sum_{k}\left[\frac{\partial \bar{p}_{j}}{\partial q_i}\left(\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\frac{\partial \bar{q}_{k}}{\partial p_{i}}+\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\frac{\partial \bar{p}_{k}}{\partial p_{i}}\right)-\frac{\partial \bar{p}_{j}}{\partial p_i}\left(\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\frac{\partial \bar{q}_{k}}{\partial q_{i}}+\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\frac{\partial \bar{p}_{k}}{\partial q_{i}}\right)\right]\\ &=\sum_{k}\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\sum_{i}\left(\frac{\partial \bar{p}_{j}}{\partial q_i}\frac{\partial \bar{q}_{k}}{\partial p_{i}}-\frac{\partial \bar{p}_{j}}{\partial p_i}\frac{\partial \bar{q}_{k}}{\partial q_{i}}\right)+\sum_{k}\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\sum_{i}\left(\frac{\partial \bar{p}_{j}}{\partial q_i}\frac{\partial \bar{p}_{k}}{\partial p_{i}}-\frac{\partial \bar{p}_{j}}{\partial p_i}\frac{\partial \bar{p}_{k}}{\partial q_{i}}\right)\\ &=\sum_{k}\frac{\partial \mathscr{H}}{\partial \bar{q}_{k}}\{\bar{p}_{j},\bar{q}_{k}\}+\sum_{k}\frac{\partial \mathscr{H}}{\partial \bar{p}_{k}}\{\bar{p}_{j},\bar{p}_{k}\} \end{aligned}

In order to satisfy Hamilton's equation, we must have

{pˉj,qˉk}=δjk{pˉj,pˉk}=0\begin{aligned} \{\bar{p}_{j},\bar{q}_{k}\}&=-\delta_{jk}\\ \{\bar{p}_{j},\bar{p}_{k}\}&=0 \end{aligned}

Thus, we can conclude that in order for the transformation to be canonical, the conditions are

{qˉj,qˉk}={pˉj,pˉk}=0{qˉj,pˉk}=δjk\begin{aligned} \{\bar{q}_{j},\bar{q}_{k}\}&=\{\bar{p}_{j},\bar{p}_{k}\}=0\\ \{\bar{q}_{j},\bar{p}_{k}\}&=\delta_{jk} \end{aligned}
 ~\tag*{$\blacksquare$}

Exercise 2.7.4 Verify that the change to a rotated frame

xˉ=xcosθysinθyˉ=xsinθ+ycosθpˉx=pxcosθpysinθpˉy=pxsinθ+pycosθ\begin{gathered} \bar{x}=x \cos \theta-y \sin \theta \\ \bar{y}=x \sin \theta+y \cos \theta \\ \bar{p}_x=p_x \cos \theta-p_y \sin \theta \\ \bar{p}_y=p_x \sin \theta+p_y \cos \theta \end{gathered}

is a canonical transformation.

Solution. To show this is a canonical transformation, we must evaluate the Poisson brackets. Before computing Poisson brackets, we can first compute non-vanishing derivatives

xˉx=cosθxˉy=sinθyˉx=sinθyˉy=cosθpˉxpx=cosθpˉxpy=sinθpˉypx=sinθpˉypy=cosθ\begin{aligned} \frac{\partial\bar{x}}{\partial x}=\cos\theta\qquad &\frac{\partial\bar{x}}{\partial y}=-\sin\theta\\ \frac{\partial\bar{y}}{\partial x}=\sin\theta\qquad &\frac{\partial\bar{y}}{\partial y}=\cos\theta\\ \frac{\partial\bar{p}_{x}}{\partial p_{x}}=\cos\theta\qquad &\frac{\partial\bar{p}_{x}}{\partial p_{y}}=-\sin\theta\\ \frac{\partial\bar{p}_{y}}{\partial p_{x}}=\sin\theta\qquad &\frac{\partial\bar{p}_{y}}{\partial p_{y}}=\cos\theta\\ \end{aligned}

where q1=xq_{1}=x, q2=yq_{2}=y and p1=pxp_{1}=p_{x}, p2=pyp_{2}=p_{y}.

{xˉ,yˉ}=i(xˉqiyˉpixˉpiyˉqi)=0\{\bar{x},\bar{y}\}=\sum_{i}\left(\frac{\partial \bar{x}}{\partial q_i} \frac{\partial \bar{y}}{\partial p_i}-\frac{\partial \bar{x}}{\partial p_i} \frac{\partial \bar{y}}{\partial q_i}\right)=0

since neither coordinate depends on any momentum. Similarly,

{pˉx,pˉy}=0\{\bar{p}_{x},\bar{p}_{y}\}=0

since Poisson bracket contains derivatives of pˉi\bar{p}_{i} with respect to qiq_{i} and these are all zero.

The remaining Poisson brackets are of the form {qˉi,pˉj}\{\bar{q}_{i},\bar{p}_{j}\}.

{xˉ,pˉx}=i(xˉqipˉxpixˉpipˉxqi)=xˉxpˉxpx+xˉypˉxpy=cos2θ+sin2θ=1{xˉ,pˉy}=i(xˉqipˉypixˉpipˉyqi)=xˉxpˉypx+xˉypˉypy=sinθcosθsinθcosθ=0\begin{aligned} \{\bar{x},\bar{p}_{x}\}& =\sum_i\left(\frac{\partial \bar{x}}{\partial q_i} \frac{\partial \bar{p}_x}{\partial p_i}-\frac{\partial \bar{x}}{\partial p_i} \frac{\partial \bar{p}_x}{\partial q_i}\right) \\ & =\frac{\partial \bar{x}}{\partial x} \frac{\partial \bar{p}_x}{\partial p_x}+\frac{\partial \bar{x}}{\partial y} \frac{\partial \bar{p}_x}{\partial p_y} \\ & =\cos ^2 \theta+\sin ^2 \theta \\ & =1\\ \left\{\bar{x}, \bar{p}_y\right\} & =\sum_i\left(\frac{\partial \bar{x}}{\partial q_i} \frac{\partial \bar{p}_y}{\partial p_i}-\frac{\partial \bar{x}}{\partial p_i} \frac{\partial \bar{p}_y}{\partial q_i}\right) \\ & =\frac{\partial \bar{x}}{\partial x} \frac{\partial \bar{p}_y}{\partial p_x}+\frac{\partial \bar{x}}{\partial y} \frac{\partial \bar{p}_y}{\partial p_y} \\ & =\sin \theta \cos \theta-\sin \theta \cos \theta \\ & =0 \end{aligned}

Similarly,

{yˉ,pˉx}=i(yˉqipˉxpiyˉpipˉxqi)=yˉxpˉxpx+yˉypˉxpy=sinθcosθ+cosθ(sinθ)=0{yˉ,pˉy}=i(yˉqipˉypiyˉpipˉyqi)=yˉxpˉypx+yˉypˉypy=sinθsinθ+cosθcosθ=1\begin{aligned} \left\{\bar{y}, \bar{p}_x\right\}&=\sum_i\left(\frac{\partial \bar{y}}{\partial q_i} \frac{\partial \bar{p}_x}{\partial p_i}-\frac{\partial \bar{y}}{\partial p_i} \frac{\partial \bar{p}_x}{\partial q_i}\right) \\ &=\frac{\partial \bar{y}}{\partial x} \frac{\partial \bar{p}_x}{\partial p_x}+\frac{\partial \bar{y}}{\partial y} \frac{\partial \bar{p}_x}{\partial p_y}\\ &=\sin\theta\cos\theta+\cos\theta(-\sin\theta)\\ &=0 \\ \left\{\bar{y}, \bar{p}_y\right\}&=\sum_i\left(\frac{\partial \bar{y}}{\partial q_i} \frac{\partial \bar{p}_y}{\partial p_i}-\frac{\partial \bar{y}}{\partial p_i} \frac{\partial \bar{p}_y}{\partial q_i}\right) \\ &=\frac{\partial \bar{y}}{\partial x} \frac{\partial \bar{p}_y}{\partial p_x}+\frac{\partial \bar{y}}{\partial y} \frac{\partial \bar{p}_y}{\partial p_y}\\ &=\sin\theta\sin\theta+\cos\theta\cos\theta\\ &=1 \end{aligned}

Therefore, the change of rotated frame is a canonical transformation.

 ~\tag*{$\blacksquare$}

Exercise 2.7.5 Show that the polar variables

ρ=(x2+y2)1/2,ϕ=tan1(y/x)pρ=e^ρp=xpx+ypy(x2+y2)1/2,pϕ=xpyypx(=lz)\begin{aligned} \rho=\left(x^2+y^2\right)^{1 / 2},\quad &\phi=\tan^{-1}(y / x)\\ p_\rho=\hat{e}_\rho \cdot \mathbf{p}=\frac{x p_x+y p_y}{\left(x^2+y^2\right)^{1 / 2}}, \quad & p_\phi=x p_y-y p_x\left(=l_z\right) \end{aligned}

are canonical. ( e^ρ\hat{e}_\rho is the unit vector in the radial direction.)

Solution. The non-vanishing derivatives are

ρx=xx2+y2ρy=yx2+y2ϕx=yx2+y2ϕy=xx2+y2pρx=y2pxxypy(x2+y2)3/2pρy=x2pyxypx(x2+y2)3/2pρpx=xx2+y2pρpy=yx2+y2pϕx=pypϕy=pxpϕpx=ypϕpy=x\begin{aligned} &\frac{\partial\rho}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}} &\quad &\frac{\partial \rho}{\partial y}=\frac{y}{\sqrt{x^{2}+y^{2}}}\\ &\frac{\partial\phi}{\partial x}=\frac{-y}{x^{2}+y^{2}} &\quad &\frac{\partial \phi}{\partial y}=\frac{x}{x^{2}+y^{2}}\\ &\frac{\partial p_{\rho}}{\partial x}=\frac{y^{2}p_{x}-xyp_{y}}{(x^{2}+y^{2})^{3/2}} &\quad &\frac{\partial p_{\rho}}{\partial y}=\frac{x^{2}p_{y}-xyp_{x}}{(x^{2}+y^{2})^{3/2}}\\ &\frac{\partial p_{\rho}}{\partial p_{x}}=\frac{x}{\sqrt{x^{2}+y^{2}}} &\quad & \frac{\partial p_{\rho}}{\partial p_{y}}=\frac{y}{\sqrt{x^{2}+y^{2}}}\\ &\frac{\partial p_{\phi}}{\partial x}=p_{y} &\quad & \frac{\partial p_{\phi}}{\partial y}=-p_{x}\\ &\frac{\partial p_{\phi}}{\partial p_{x}}=-y &\quad & \frac{\partial p_{\phi}}{\partial p_{y}}=x \end{aligned}

Now, let's evaluate Poisson brackets

{ρ,ϕ}=i(ρqiϕpiρpiϕqi)=0\{\rho,\phi\}=\sum_i\left(\frac{\partial \rho}{\partial q_i} \frac{\partial \phi}{\partial p_i}-\frac{\partial \rho}{\partial p_i} \frac{\partial \phi}{\partial q_i}\right)=0

since coordinates don't depend on the momenta.

{pρ,pϕ}=i(pρqipϕpipρpipϕqi)=pρxpϕpxpρpxpϕx+pρypϕpypρpypϕy=y2pxxypy(x2+y2)3/2(y)xx2+y2py+x2pyxypx(x2+y2)3/2xyx2+y2(px)=y3px+xy2py(x3+xy2)py+x3pyx2ypx+(x2y+y3)px(x2+y2)3/2=0\begin{aligned} \{p_{\rho},p_{\phi}\}&=\sum_{i}\left(\frac{\partial p_\rho}{\partial q_i} \frac{\partial p_\phi}{\partial p_i}-\frac{\partial p_\rho}{\partial p_i} \frac{\partial p_\phi}{\partial q_i}\right)\\ &=\frac{\partial p_\rho}{\partial x} \frac{\partial p_\phi}{\partial p_x}-\frac{\partial p_\rho}{\partial p_x} \frac{\partial p_\phi}{\partial x}+\frac{\partial p_\rho}{\partial y} \frac{\partial p_\phi}{\partial p_y}-\frac{\partial p_\rho}{\partial p_y} \frac{\partial p_\phi}{\partial y}\\ &=\frac{y^{2}p_{x}-xyp_{y}}{(x^{2}+y^{2})^{3/2}}(-y)-\frac{x}{\sqrt{x^{2}+y^{2}}}p_{y}+\frac{x^{2}p_{y}-xyp_{x}}{(x^{2}+y^{2})^{3/2}}x-\frac{y}{\sqrt{x^{2}+y^{2}}}(-p_{x})\\ &=\frac{-y^{3}p_{x}+xy^{2}p_{y}-(x^{3}+xy^{2})p_{y}+x^{3}p_{y}-x^{2}yp_{x}+(x^{2}y+y^{3})p_{x}}{(x^{2}+y^{2})^{3/2}}\\ &=0 \end{aligned}

The remaining Poisson brackets are of the form {qˉi,pˉj}\{\bar{q}_{i},\bar{p}_{j}\}.

{ρ,pρ}=i(ρqipρpiρpipρqi)=ρxpρpxρpxpρx+ρypρpyρpypρy=x2x2+y20+y2x2+y20=1{ρ,pϕ}=i(ρqipϕpiρpipϕqi)=ρxpϕpxρpxpϕx+ρypϕpyρpypϕy=xyx2+y20+xyx2+y20=0{ϕ,pρ}=i(ϕqipρpiϕpipρqi)=ϕxpρpxϕpxpρx+ϕypρpyϕpypρy=yx2+y2xx2+y20+xx2+y2yx2+y20=0{ϕ,pϕ}=i(ϕqipϕpiϕpipϕqi)=ϕxpϕpxϕpxpϕx+ϕypϕpyϕpypϕy=yx2+y2(y)0+xx2+y2x0=1\begin{aligned} \left\{\rho, p_\rho\right\}&=\sum_i\left(\frac{\partial \rho}{\partial q_i} \frac{\partial p_\rho}{\partial p_i}-\frac{\partial \rho}{\partial p_i} \frac{\partial p_\rho}{\partial q_i}\right) \\ &=\frac{\partial \rho}{\partial x} \frac{\partial p_\rho}{\partial p_x}-\frac{\partial \rho}{\partial p_x} \frac{\partial p_\rho}{\partial x}+\frac{\partial \rho}{\partial y} \frac{\partial p_\rho}{\partial p_y}-\frac{\partial \rho}{\partial p_y} \frac{\partial p_\rho}{\partial y}\\ & =\frac{x^2}{x^2+y^2}-0+\frac{y^2}{x^2+y^2}-0 \\ & =1 \\ \left\{\rho, p_\phi\right\}&=\sum_i\left(\frac{\partial \rho}{\partial q_i} \frac{\partial p_\phi}{\partial p_i}-\frac{\partial \rho}{\partial p_i} \frac{\partial p_\phi}{\partial q_i}\right) \\ &=\frac{\partial \rho}{\partial x} \frac{\partial p_\phi}{\partial p_x}-\frac{\partial \rho}{\partial p_x} \frac{\partial p_\phi}{\partial x}+\frac{\partial \rho}{\partial y} \frac{\partial p_\phi}{\partial p_y}-\frac{\partial \rho}{\partial p_y} \frac{\partial p_\phi}{\partial y}\\ & =-\frac{x y}{\sqrt{x^2+y^2}}-0+\frac{x y}{\sqrt{x^2+y^2}}-0 \\ & =0 \\ \left\{\phi, p_\rho\right\}&=\sum_i\left(\frac{\partial \phi}{\partial q_i} \frac{\partial p_\rho}{\partial p_i}-\frac{\partial \phi}{\partial p_i} \frac{\partial p_\rho}{\partial q_i}\right) \\ &=\frac{\partial \phi}{\partial x} \frac{\partial p_\rho}{\partial p_x}-\frac{\partial \phi}{\partial p_x} \frac{\partial p_\rho}{\partial x}+\frac{\partial \phi}{\partial y} \frac{\partial p_\rho}{\partial p_y}-\frac{\partial \phi}{\partial p_y} \frac{\partial p_\rho}{\partial y}\\ & =\frac{-y}{x^2+y^2}\frac{x}{\sqrt{x^{2}+y^{2}}}-0+\frac{x}{x^2+y^2}\frac{y}{\sqrt{x^{2}+y^{2}}}-0 \\ & =0 \\ \left\{\phi, p_\phi\right\}&=\sum_i\left(\frac{\partial \phi}{\partial q_i} \frac{\partial p_\phi}{\partial p_i}-\frac{\partial \phi}{\partial p_i} \frac{\partial p_\phi}{\partial q_i}\right) \\ &=\frac{\partial \phi}{\partial x} \frac{\partial p_\phi}{\partial p_x}-\frac{\partial \phi}{\partial p_x} \frac{\partial p_\phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{\partial p_\phi}{\partial p_y}-\frac{\partial \phi}{\partial p_y} \frac{\partial p_\phi}{\partial y}\\ &=\frac{-y}{x^2+y^2}(-y)-0+\frac{x}{x^2+y^2}x-0\\ &=1 \end{aligned}

Thus all the Poisson brackets are correct, so the transformation is canonical.

 ~\tag*{$\blacksquare$}

Exercise 2.7.6 Verify that the change from the variables r1,r2,p1,p2\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2 to rCM,pCM,r\mathbf{r}_{\mathrm{CM}}, \mathbf{p}_{\mathrm{CM}}, \mathbf{r}, and p\mathbf{p} is a canonical transformation. (See Exercise 2.5.4).

Solution. The transformation from the coordinates r1\mathbf{r}_{1} and r2\mathbf{r}_{2} of the masses m1m_{1} and m2m_{2} to relative position r\mathbf{r} and the position of the center of mass rCM\mathbf{r}_{CM} are

r=r1r2rCM=m1r1+m2r2M\begin{aligned} \mathbf{r}&=\mathbf{r}_{1}-\mathbf{r}_{2}\\ \mathbf{r}_{CM}&=\frac{m_{1}\mathbf{r}_{1}+m_{2}\mathbf{r}_{2}}{M} \end{aligned}

where M:=m1+m2M:=m_{1}+m_{2} is the total mass. The conjugate momenta is the original system are

pi=mir˙i\mathbf{p}_{i}=m_{i}\dot{\mathbf{r}}_{i}

The conjugate momenta transform according to

p=μr˙=m2p1m1p2MpCM=Mr˙CM=p1+p2\begin{aligned} \mathbf{p}&=\mu\dot{\mathbf{r}}=\frac{m_{2}\mathbf{p}_{1}-m_{1}\mathbf{p}_{2}}{M}\\ \mathbf{p}_{CM}&=M\dot{\mathbf{r}}_{CM}=\mathbf{p}_{1}+\mathbf{p}_{2} \end{aligned}

where μ:=m1m2M\mu:=\frac{m_{1}m_{2}}{M} is the reduced mass.

Now we calculate the Poisson brackets to check whether it is a canonical transformation.

Note that the new coordinates depend only on the old coordinates, and conversely, the new momenta depend only on the old momenta. Also notice that rir_{i} depends only on the ii components of r1\mathbf{r}_{1} and r2\mathbf{r}_{2}, and pjp_{j} depends only on the jj components of p1\mathbf{p}_{1} and p2\mathbf{p}_{2}.

Since the Poisson brackets {qˉi,qˉj}\{\bar{q}_{i},\bar{q}_{j}\} and {pˉi,pˉj}\{\bar{p}_{i},\bar{p}_{j}\} all invoke taking derivatives of coordinates with respect to momenta or momenta with respect to coordinates, we have

{qˉi,qˉj}=0{pˉi,pˉj}=0\begin{aligned} \{\bar{q}_{i},\bar{q}_{j}\}&=0\\ \{\bar{p}_{i},\bar{p}_{j}\}&=0 \end{aligned}

where ii and jj takes on the values xx, yy and zz. Then what we left to check are {qˉi,pˉj}\{\bar{q}_{i},\bar{p}_{j}\}. There are three cases {ri,pj}\{r_{i},p_{j}\}, {rCMi,pCMj}\{r_{CMi},p_{CMj}\}, {rCMi,pj}\{r_{CMi},p_{j}\} or {ri,pCMj}\{r_{i},p_{CMj}\}.

(1) {ri,pj}\{r_{i},p_{j}\}

  • i=ji=j
{ri,pi}=α(riqαpipαripαpiqα)=αriqαpipα=rir1ipip1i+rir2ipip2i=1m2M+(1)(m1M)=m1+m2M=1\begin{aligned} \{r_{i},p_{i}\}&=\sum\limits_{\alpha}\left(\frac{\partial r_{i}}{\partial q_{\alpha}}\frac{\partial p_{i}}{\partial p_{\alpha}}-\frac{\partial r_{i}}{\partial p_{\alpha}}\frac{\partial p_{i}}{\partial q_{\alpha}}\right)\\ &=\sum\limits_{\alpha}\frac{\partial r_{i}}{\partial q_{\alpha}}\frac{\partial p_{i}}{\partial p_{\alpha}}\\ &=\frac{\partial r_{i}}{\partial r_{1i}}\frac{\partial p_{i}}{\partial p_{1i}}+\frac{\partial r_{i}}{\partial r_{2i}}\frac{\partial p_{i}}{\partial p_{2i}}\\ &=1\cdot \frac{m_{2}}{M}+(-1)\cdot \left(-\frac{m_{1}}{M}\right)\\ &=\frac{m_{1}+m_{2}}{M}\\ &=1 \end{aligned}

where qαq_{\alpha} and pαp_{\alpha} sum over all 66 components of the original position vectors {r1x,r1y,r1z,r2x,r2y,r2z}\{r_{1x},r_{1y},r_{1z},r_{2x},r_{2y},r_{2z}\} that we denote as {r1i,r2i}\{r_{1i},r_{2i}\} and momentum vectors {p1x,p1y,p1z,p2x,p2y,p2z}\{p_{1x},p_{1y},p_{1z},p_{2x},p_{2y},p_{2z}\} that we denote as {p1i,p2i}\{p_{1i},p_{2i}\}, respectively.

  • iji\neq j
{xi,yj}=α(riqαpjpαripαpjqα)=αriqαpjpα=rir1ipjp1i+rir2ipjp2i+rir1jpjp1j+rir2jpjp2j=10+(1)0+0m2M+0(m1M)=0\begin{aligned} \{x_{i},y_{j}\}&=\sum\limits_{\alpha}\left(\frac{\partial r_{i}}{\partial q_{\alpha}}\frac{\partial p_{j}}{\partial p_{\alpha}}-\frac{\partial r_{i}}{\partial p_{\alpha}}\frac{\partial p_{j}}{\partial q_{\alpha}}\right)\\ &=\sum\limits_{\alpha}\frac{\partial r_{i}}{\partial q_{\alpha}}\frac{\partial p_{j}}{\partial p_{\alpha}}\\ &=\frac{\partial r_{i}}{\partial r_{1i}}\frac{\partial p_{j}}{\partial p_{1i}}+\frac{\partial r_{i}}{\partial r_{2i}}\frac{\partial p_{j}}{\partial p_{2i}}+\frac{\partial r_{i}}{\partial r_{1j}}\frac{\partial p_{j}}{\partial p_{1j}}+\frac{\partial r_{i}}{\partial r_{2j}}\frac{\partial p_{j}}{\partial p_{2j}}\\ &=1\cdot 0+(-1)\cdot 0+0\cdot \frac{m_{2}}{M}+0\cdot\left(-\frac{m_{1}}{M}\right)\\ &=0 \end{aligned}

(2) {rCMi,pCMj}\{r_{CMi},p_{CMj}\}

  • i=ji=j
{rCMi,pCMi}=α(rCMiqαpCMipαrCMipαpCMiqα)=αrCMiqαpCMipα=rCMir1ipCMip1i+rCMir2ipCMip2i=m1M1+m2M1=m1+m2M=1\begin{aligned} \{r_{CMi},p_{CMi}\}&=\sum\limits_{\alpha}\left(\frac{\partial r_{CMi}}{\partial q_{\alpha}}\frac{\partial p_{CMi}}{\partial p_{\alpha}}-\frac{\partial r_{CMi}}{\partial p_{\alpha}}\frac{\partial p_{CMi}}{\partial q_{\alpha}}\right)\\ &=\sum\limits_{\alpha}\frac{\partial r_{CMi}}{\partial q_{\alpha}}\frac{\partial p_{CMi}}{\partial p_{\alpha}}\\ &=\frac{\partial r_{CMi}}{\partial r_{1i}}\frac{\partial p_{CMi}}{\partial p_{1i}}+\frac{\partial r_{CMi}}{\partial r_{2i}}\frac{\partial p_{CMi}}{\partial p_{2i}}\\ &=\frac{m_{1}}{M}\cdot 1+\frac{m_{2}}{M}\cdot 1\\ &=\frac{m_{1}+m_{2}}{M}\\ &=1 \end{aligned}
  • iji\neq j
{rCMi,pCMj}=α(rCMiqαpCMjpαrCMipαpCMjqα)=αrCMiqαpCMjpα=rCMir1ipCMjp1i+rCMir2ipCMjp2i+rCMir1jpCMjp1j+rCMir2jpCMjp2j=0\begin{aligned} \{r_{CMi},p_{CMj}\}&=\sum\limits_{\alpha}\left(\frac{\partial r_{CMi}}{\partial q_{\alpha}}\frac{\partial p_{CMj}}{\partial p_{\alpha}}-\frac{\partial r_{CMi}}{\partial p_{\alpha}}\frac{\partial p_{CMj}}{\partial q_{\alpha}}\right)\\ &=\sum\limits_{\alpha}\frac{\partial r_{CMi}}{\partial q_{\alpha}}\frac{\partial p_{CMj}}{\partial p_{\alpha}}\\ &=\frac{\partial r_{CMi}}{\partial r_{1i}}\frac{\partial p_{CMj}}{\partial p_{1i}}+\frac{\partial r_{CMi}}{\partial r_{2i}}\frac{\partial p_{CMj}}{\partial p_{2i}}+\frac{\partial r_{CMi}}{\partial r_{1j}}\frac{\partial p_{CMj}}{\partial p_{1j}}+\frac{\partial r_{CMi}}{\partial r_{2j}}\frac{\partial p_{CMj}}{\partial p_{2j}}\\ &=0 \end{aligned}

(3) {rCMi,pj}\{r_{CMi},p_{j}\} or {ri,pCMj}\{r_{i},p_{CMj}\}

  • i=ji=j
{rCMi,pj}=α(rCMiqαpipαrCMipαpiqα)=αrCMiqαpipα=rCMir1ipip1i+rCMir2ipip2i=m1Mm2M+m2M(m1M)=0\begin{aligned} \{r_{CMi},p_{j}\}&=\sum\limits_{\alpha}\left(\frac{\partial r_{CMi}}{\partial q_{\alpha}}\frac{\partial p_{i}}{\partial p_{\alpha}}-\frac{\partial r_{CMi}}{\partial p_{\alpha}}\frac{\partial p_{i}}{\partial q_{\alpha}}\right)\\ &=\sum\limits_{\alpha}\frac{\partial r_{CMi}}{\partial q_{\alpha}}\frac{\partial p_{i}}{\partial p_{\alpha}}\\ &=\frac{\partial r_{CMi}}{\partial r_{1i}}\frac{\partial p_{i}}{\partial p_{1i}}+\frac{\partial r_{CMi}}{\partial r_{2i}}\frac{\partial p_{i}}{\partial p_{2i}}\\ &=\frac{m_{1}}{M}\cdot \frac{m_{2}}{M}+\frac{m_{2}}{M}\cdot \left(-\frac{m_{1}}{M}\right)\\ &=0 \end{aligned}
{ri,pCMj}=α(riqαpCMipαripαpCMiqα)=αriqαpCMipα=rir1ipCMip1i+rir2ipCMip2i=11+(1)1=0\begin{aligned} \{r_{i},p_{CMj}\}&=\sum\limits_{\alpha}\left(\frac{\partial r_{i}}{\partial q_{\alpha}}\frac{\partial p_{CMi}}{\partial p_{\alpha}}-\frac{\partial r_{i}}{\partial p_{\alpha}}\frac{\partial p_{CMi}}{\partial q_{\alpha}}\right)\\ &=\sum\limits_{\alpha}\frac{\partial r_{i}}{\partial q_{\alpha}}\frac{\partial p_{CMi}}{\partial p_{\alpha}}\\ &=\frac{\partial r_{i}}{\partial r_{1i}}\frac{\partial p_{CMi}}{\partial p_{1i}}+\frac{\partial r_{i}}{\partial r_{2i}}\frac{\partial p_{CMi}}{\partial p_{2i}}\\ &=1\cdot 1+(-1)\cdot 1\\ &=0 \end{aligned}
  • iji\neq j
{rCMi,pj}=α(rCMiqαpjpαrCMipαpjqα)=αrCMiqαpjpα=rCMir1ipjp1i+rCMir2ipjp2i+rCMir1jpjp1j+rCMir2jpjp2j=0\begin{aligned} \{r_{CMi},p_{j}\}&=\sum\limits_{\alpha}\left(\frac{\partial r_{CMi}}{\partial q_{\alpha}}\frac{\partial p_{j}}{\partial p_{\alpha}}-\frac{\partial r_{CMi}}{\partial p_{\alpha}}\frac{\partial p_{j}}{\partial q_{\alpha}}\right)\\ &=\sum\limits_{\alpha}\frac{\partial r_{CMi}}{\partial q_{\alpha}}\frac{\partial p_{j}}{\partial p_{\alpha}}\\ &=\frac{\partial r_{CMi}}{\partial r_{1i}}\frac{\partial p_{j}}{\partial p_{1i}}+\frac{\partial r_{CMi}}{\partial r_{2i}}\frac{\partial p_{j}}{\partial p_{2i}}+\frac{\partial r_{CMi}}{\partial r_{1j}}\frac{\partial p_{j}}{\partial p_{1j}}+\frac{\partial r_{CMi}}{\partial r_{2j}}\frac{\partial p_{j}}{\partial p_{2j}}\\ &=0 \end{aligned}
{ri,pCMj}=α(riqαpCMjpαripαpCMjqα)=αriqαpCMjpα=rir1ipCMjp1i+rir2ipCMjp2i+rir1jpCMjp1j+rir2jpCMjp2j=0\begin{aligned} \{r_{i},p_{CMj}\}&=\sum\limits_{\alpha}\left(\frac{\partial r_{i}}{\partial q_{\alpha}}\frac{\partial p_{CMj}}{\partial p_{\alpha}}-\frac{\partial r_{i}}{\partial p_{\alpha}}\frac{\partial p_{CMj}}{\partial q_{\alpha}}\right)\\ &=\sum\limits_{\alpha}\frac{\partial r_{i}}{\partial q_{\alpha}}\frac{\partial p_{CMj}}{\partial p_{\alpha}}\\ &=\frac{\partial r_{i}}{\partial r_{1i}}\frac{\partial p_{CMj}}{\partial p_{1i}}+\frac{\partial r_{i}}{\partial r_{2i}}\frac{\partial p_{CMj}}{\partial p_{2i}}+\frac{\partial r_{i}}{\partial r_{1j}}\frac{\partial p_{CMj}}{\partial p_{1j}}+\frac{\partial r_{i}}{\partial r_{2j}}\frac{\partial p_{CMj}}{\partial p_{2j}}\\ &=0 \end{aligned}

Thus all the Poisson brackets are correct, so the transformation is canonical.

 ~\tag*{$\blacksquare$}

Exercise 2.7.7 Verify that

qˉ=ln(q1sinp)pˉ=qcotp\begin{gathered} \bar{q}=\ln \left(q^{-1} \sin p\right) \\ \bar{p}=q \cot p \end{gathered}

is a canonical transformation.

Solution. The partial derivatives are

qˉq=q1qˉp=cotppˉq=cotppˉp=q(1+cot2p)\begin{aligned} &\frac{\partial \bar{q}}{\partial q}=-q^{-1}&\qquad &\frac{\partial \bar{q}}{\partial p}=\cot p\\ &\frac{\partial \bar{p}}{\partial q}=\cot p&\qquad &\frac{\partial \bar{p}}{\partial p}=-q(1+\cot^{2} p) \end{aligned}

The only remaining term to verify is

{qˉ,pˉ}=qˉqpˉpqˉppˉq=1\begin{aligned} \{\bar{q},\bar{p}\}&=\frac{\partial \bar{q}}{\partial q}\frac{\partial \bar{p}}{\partial p}-\frac{\partial\bar{q}}{\partial p}\frac{\partial\bar{p}}{\partial q}\\ &=1 \end{aligned}

Thus the transformation is canonical.

 ~\tag*{$\blacksquare$}

Exercise 2.7.8 We would like to derive here Eq. (2.7.9), which gives the transformation of the momenta under a coordinate transformation in configuration space:

qiqˉi(q1,,qn)q_i \rightarrow \bar{q}_i(q_1, \ldots, q_n)

(1) Argue that if we invert the above equation to get q=q(qˉ)q=q(\bar{q}), we can derive the following counterpart of Eq. (2.7.7):

q˙i=jqiqˉjqˉ˙j\dot{q}_i=\sum_j \frac{\partial q_i}{\partial \bar{q}_j} \dot{\bar{q}}_j

(2) Show from the above that

(q˙iq˙j)qˉ=qiqˉj\left(\frac{\partial \dot{q}_i}{\partial \dot{q}_j}\right)_{\bar{q}}=\frac{\partial q_i}{\partial \bar{q}_j}

(3) Now calculate

pˉi=[L(qˉ,qˉ˙)qˉ˙i]qˉ=[L(q,q˙)q˙i]qˉ\bar{p}_i=\left[\frac{\partial \mathscr{L}(\bar{q}, \dot{\bar{q}})}{\partial \dot{\bar{q}}_i}\right]_{\bar{q}}=\left[\frac{\partial \mathscr{L}(q, \dot{q})}{\partial \dot{q}_i}\right]_{\bar{q}}

Use the chain rule and the fact that q=q(qˉ)q=q(\bar{q}) and not q(qˉ,qˉ˙)q(\bar{q}, \dot{\bar{q}}) to derive Eq. (2.7.9).

(4) Verify, by calculating the Poisson braket in Eq. (2.7.18), that the point transformation is canonical.

Solution. (1) Since qi=qi(qˉ1,,qˉn)q_{i}=q_{i}(\bar{q}_{1},\ldots,\bar{q}_{n}),

q˙i=dqidt=jqiqˉjdqˉjdt=jqiqˉjqˉ˙j\dot{q}_{i}=\frac{\mathrm{d}q_{i}}{\mathrm{d}t}=\sum_{j}\frac{\partial q_{i}}{\partial \bar{q}_{j}}\frac{\mathrm{d}\bar{q}_{j}}{\mathrm{d}t}=\sum_{j}\frac{\partial q_{i}}{\partial \bar{q}_{j}}\dot{\bar{q}}_{j}

(2) Since the velocities qˉ˙j\dot{\bar{q}}_{j} are independent variables, if we hold the coordinates qˉ\bar{q} constant, we will have

(q˙iqˉ˙j)qˉ=qˉ˙j(lqiqˉkqˉ˙k)=kqiqˉkqˉ˙kqˉ˙j=kqiqˉkδkj=qiqˉj(2.3)\left(\frac{\partial \dot{q}_{i}}{\partial \dot{\bar{q}}_{j}}\right)_{\bar{q}}=\frac{\partial}{\partial \dot{\bar{q}}_{j}}\left(\sum_{l}\frac{\partial q_{i}}{\partial \bar{q}_{k}}\dot{\bar{q}}_{k} \right)=\sum_{k}\frac{\partial q_{i}}{\partial \bar{q}_{k}}\frac{\partial \dot{\bar{q}}_{k}}{\partial \dot{\bar{q}}_{j}}=\sum_{k}\frac{\partial q_{i}}{\partial \bar{q}_{k}}\delta_{kj}=\frac{\partial q_{i}}{\partial \bar{q}_{j}}\tag{2.3}

(3) We can use the Lagrangian to see how the momenta pip_{i} transform under the coordinate change. The definition of the canonical momentum is

pi:=Lq˙ip_{i}:=\frac{\partial \mathscr{L}}{\partial \dot{q}_{i}}

If we write the Lagrangian in terms of the new coordinates and velocities L=L(qˉ,qˉ˙)\mathscr{L}=\mathscr{L}(\bar{q},\dot{\bar{q}}), then the momenta in the new coordinate system are

pˉi=L(qˉ,qˉ˙)qˉ˙i\bar{p}_{i}=\frac{\partial\mathscr{L}(\bar{q},\dot{\bar{q}})}{\partial \dot{\bar{q}}_{i}}

At this point, it's worth noting that although L(qˉ,qˉ˙)\mathscr{L}(\bar{q},\dot{\bar{q}}) and L(q,q˙)\mathscr{L}(q,\dot{q}) are different functions, they have the same value at each point in the configuration space. That is, if we choose some point that has the coordinates (q,q˙)(q,\dot{q}) in the qq system and coordinates (qˉ,qˉ˙)(\bar{q},\dot{\bar{q}}) in the qˉ\bar{q} system, then, numerically at that one point, we must have L(qˉ,qˉ˙)=L(q,q˙)\mathscr{L}(\bar{q},\dot{\bar{q}})=\mathscr{L}(q,\dot{q}). Because of this, we can write

pˉi=(L(qˉ,qˉ˙)qˉ˙i)qˉ=(L(q,q˙)qˉ˙i)qˉ\bar{p}_{i}=\left(\frac{\partial\mathscr{L}(\bar{q},\dot{\bar{q}})}{\partial \dot{\bar{q}}_{i}}\right)_{\bar{q}}=\left(\frac{\partial\mathscr{L}(q,\dot{q})}{\partial \dot{\bar{q}}_{i}}\right)_{\bar{q}}

That is, if we are keeping qˉ\bar{q} constant, the derivative of L\mathscr{L} with respect to qˉ˙i\dot{\bar{q}}_{i} must be the same (numerically) no matter what coordinates we are using to write L\mathscr{L}. Therefore, we can use the latter form and then use the chain rule to write out the derivative:

pˉi=(L(q,q˙)qˉi)qˉ=j[Lqjqjqˉ˙i+Lq˙jq˙jqˉ˙i]\bar{p}_i=\left(\frac{\partial L(q, \dot{q})}{\partial \bar{q}_i}\right)_{\bar{q}}=\sum_j\left[\frac{\partial L}{\partial q_j} \frac{\partial q_j}{\partial \dot{\bar{q}}_i}+\frac{\partial L}{\partial \dot{q}_j} \frac{\partial \dot{q}_j}{\partial \dot{\bar{q}}_i}\right]

Because the coordinates qq don't depend on the velocities qˉ˙\dot{\bar{q}}, the first term on the RHS is zero. We can use (2.3) in the second term, and we have

pˉi=jLq˙jq˙jqˉ˙i=jLq˙jqjqˉi=jqjqˉipj\begin{aligned} \bar{p}_i &=\sum_j\frac{\partial L}{\partial \dot{q}_j} \frac{\partial \dot{q}_j}{\partial \dot{\bar{q}}_i}\\ & =\sum_j \frac{\partial L}{\partial \dot{q}_j} \frac{\partial q_j}{\partial \bar{q}_i} \\ & =\sum_j \frac{\partial q_j}{\partial \bar{q}_i} p_j \end{aligned}

where we used the definition of canonical momentum at the last equality. We have derived Eq. (2.7.9).

(4) Point transformation is given by

qˉi=qˉi(q1,,qn)pˉi=jqjqˉipj\begin{aligned} \bar{q}_{i}&=\bar{q}_{i}(q_{1},\ldots,q_{n})\\ \bar{p}_{i}&=\sum\limits_{j}\frac{\partial q_{j}}{\partial \bar{q}_{i}}p_{j} \end{aligned}

In this case, the coordinate transformation to qˉ\bar{q} is completely arbitrary, but the momentum transformation must follow the formula given. The derivatives qiqˉj\frac{\partial q_i}{\partial \bar{q}_j} in the formula for pˉi\bar{p}_i are taken at constant qˉ\bar{q}. Since the coordinate formulas depend only on the old coordinates, and the momentum formulas depend only on the old momenta, the Poisson brackets satisfy

{qˉi,qˉj}={pˉi,pˉj}=0\left\{\bar{q}_i, \bar{q}_j\right\}=\left\{\bar{p}_i, \bar{p}_j\right\}=0

For the mixed brackets, we have

{qˉi,pˉj}=k(qˉiqkpˉjpkqˉipkpˉjqk)=kqˉiqk(pk(lqlqˉjpl))=kqˉiqk(lqlqˉjplpk)=kqˉiqk(lqlqˉjδlk)=kqˉiqkqkqˉj=qˉiqˉj=δij\begin{aligned} \left\{\bar{q}_i, \bar{p}_j\right\} & =\sum_k\left(\frac{\partial \bar{q}_i}{\partial q_k} \frac{\partial \bar{p}_j}{\partial p_k}-\frac{\partial \bar{q}_i}{\partial p_k} \frac{\partial \bar{p}_j}{\partial q_k}\right) \\ &=\sum_k \frac{\partial \bar{q}_i}{\partial q_k} \left(\frac{\partial}{\partial p_{k}}\left(\sum_l \frac{\partial q_{l}}{\partial \bar{q}_{j}}p_{l}\right)\right)\\ &=\sum_k \frac{\partial \bar{q}_i}{\partial q_k} \left(\sum_l \frac{\partial q_{l}}{\partial \bar{q}_{j}}\frac{\partial p_{l}}{\partial p_{k}}\right)\\ &=\sum_k \frac{\partial \bar{q}_i}{\partial q_k} \left(\sum_l \frac{\partial q_{l}}{\partial \bar{q}_{j}}\delta_{lk}\right)\\ &=\sum_k \frac{\partial \bar{q}_i}{\partial q_k} \frac{\partial q_k}{\partial \bar{q}_j} \\ &=\frac{\partial \bar{q}_i}{\partial \bar{q}_j} \\ & =\delta_{i j} \end{aligned}

Thus the point transformation is a canonical transformation.

 ~\tag*{$\blacksquare$}

Exercise 2.7.9 Verify Eq. (2.7.19) by direct computation. Use the chain rule to go from q,pq, p derivatives to qˉ,pˉ\bar{q}, \bar{p} derivatives. Collect terms that represent Poisson braket of the latter. Solution. The Poisson bracket of two functions is defined as

{ω,σ}=i(ωqiσpiωpiσqi)\{\omega, \sigma\}=\sum_i\left(\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial p_i}-\frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial q_i}\right)

Calculating the Poisson bracket requires knowing ω\omega and σ\sigma as functions of the coordinates qiq_i and momenta pip_i in the particular coordinate system we're using.

The simplest way of finding out is to write the canonical transformation as

qˉi=qˉi(q,p)pˉi=pˉ(q,p)\begin{aligned} \bar{q}_i & =\bar{q}_i(q, p) \\ \bar{p}_i & =\bar{p}(q, p) \end{aligned}

We can then write the Poisson bracket in the new coordinates as

{ω,σ}qˉ,pˉ=j(ωqˉjσpˉjωpˉjσqˉj)\{\omega, \sigma\}_{\bar{q}, \bar{p}}=\sum_j\left(\frac{\partial \omega}{\partial \bar{q}_j} \frac{\partial \sigma}{\partial \bar{p}_j}-\frac{\partial \omega}{\partial \bar{p}_j} \frac{\partial \sigma}{\partial \bar{q}_j}\right)

Assuming the transformation is invertible, we can use the chain rule to calculate the derivatives with respect to the barred coordinates. This gives the following (Here we use Einstein summation convention):

{ω,σ}qˉ,pˉ=(ωqiqiqˉj+ωpipiqˉj)(σqkqkpˉj+σpkpkpˉj)(ωqiqipˉj+ωpipipˉj)(σqkqkqˉj+σpkpkqˉj)=ωqiσpk(qiqˉjpkpˉjqipˉjpkqˉj)+ωpiσqk(piqˉjqkpˉjpipˉjqkqˉj)+ωqiσqk(qiqˉjqkpˉjqipˉjqkqˉj)+ωpiσpk(piqˉjpkpˉjpipˉjpkqˉj)=ωqiσpk{qi,pk}+ωpiσqk{pi,qk}+ωqiσqk{qi,qk}+ωpiσpk{pi,pk}\begin{aligned} \{\omega, \sigma\}_{\bar{q}, \bar{p}}=&\left(\frac{\partial \omega}{\partial q_i} \frac{\partial q_i}{\partial \bar{q}_j}+\frac{\partial \omega}{\partial p_i} \frac{\partial p_i}{\partial \bar{q}_j}\right)\left(\frac{\partial \sigma}{\partial q_k} \frac{\partial q_k}{\partial \bar{p}_j}+\frac{\partial \sigma}{\partial p_k} \frac{\partial p_k}{\partial \bar{p}_j}\right)\\ -&\left(\frac{\partial \omega}{\partial q_i} \frac{\partial q_i}{\partial \bar{p}_j}+\frac{\partial \omega}{\partial p_i} \frac{\partial p_i}{\partial \bar{p}_j}\right)\left(\frac{\partial \sigma}{\partial q_k} \frac{\partial q_k}{\partial \bar{q}_j}+\frac{\partial \sigma}{\partial p_k} \frac{\partial p_k}{\partial \bar{q}_j}\right) \\ =&\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial p_k}\left(\frac{\partial q_i}{\partial \bar{q}_j} \frac{\partial p_k}{\partial \bar{p}_j}-\frac{\partial q_i}{\partial \bar{p}_j} \frac{\partial p_k}{\partial \bar{q}_j}\right)+\frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial q_k}\left(\frac{\partial p_i}{\partial \bar{q}_j} \frac{\partial q_k}{\partial \bar{p}_j}-\frac{\partial p_i}{\partial \bar{p}_j} \frac{\partial q_k}{\partial \bar{q}_j}\right)\\ +&\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial q_k}\left(\frac{\partial q_i}{\partial \bar{q}_j} \frac{\partial q_k}{\partial \bar{p}_j}-\frac{\partial q_i}{\partial \bar{p}_j} \frac{\partial q_k}{\partial \bar{q}_j}\right)+\frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial p_k}\left(\frac{\partial p_i}{\partial \bar{q}_j} \frac{\partial p_k}{\partial \bar{p}_j}-\frac{\partial p_i}{\partial \bar{p}_j} \frac{\partial p_k}{\partial \bar{q}_j}\right) \\ =&\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial p_k}\left\{q_i, p_k\right\}+\frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial q_k}\left\{p_i, q_k\right\}+\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial q_k}\left\{q_i, q_k\right\}+\frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial p_k}\left\{p_i, p_k\right\} \end{aligned}

For a canonical transformation, the Poisson brackets in the last equation satisfy

{qi,pk}={pi,qk}=δik{qi,qk}={pi,pk}=0\begin{array}{l} \left\{q_i, p_k\right\}=-\left\{p_i, q_k\right\}=\delta_{i k} \\ \left\{q_i, q_k\right\}=\left\{p_i, p_k\right\}=0 \end{array}

Applying these conditions to the above, we find

{ω,σ}qˉ,pˉ=(ωqiσpkωpiσqk)δik=ωqiσpiωpiσqi={ω,σ}q,p\begin{aligned} \{\omega, \sigma\}_{\bar{q}, \bar{p}} & =\left(\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial p_k}-\frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial q_k}\right) \delta_{i k} \\ & =\frac{\partial \omega}{\partial q_i} \frac{\partial \sigma}{\partial p_i}-\frac{\partial \omega}{\partial p_i} \frac{\partial \sigma}{\partial q_i} \\ & =\{\omega, \sigma\}_{q, p} \end{aligned}

Thus the Poisson bracket is invariant under a canonical transformation.

 ~\tag*{$\blacksquare$}

2.8 Symmetries and Their Consequences

Exercise 2.8.1 Show that p=p1+p2p=p_1+p_2, the total momentum, is the generator of infinitesimal translations for a two-particle system.

Solution. Since g=p1+p2g=p_{1}+p_{2}, it generates the infinitesimal transformations

δx1=+εgp1=+ε,δp1=εgx1=0δx2=+εgp2=+ε,δp2=εgx2=0\begin{array}{ll} \delta x_1=+\varepsilon \frac{\partial g}{\partial p_1}=+\varepsilon, & \delta p_1=-\varepsilon \frac{\partial g}{\partial x_1}=0 \\ \delta x_2=+\varepsilon \frac{\partial g}{\partial p_2}=+\varepsilon, & \delta p_2=-\varepsilon \frac{\partial g}{\partial x_2}=0 \end{array}

So to order ε\varepsilon, these give the canonical transformations xixˉi(xj,pj)x_{i}\to \bar{x}_{i}(x_{j},p_{j}) and pipˉi(xj,pj)p_{i}\to \bar{p}_{i}(x_{j},p_{j}) with

xˉ1=x1+ε,pˉ1=p1,xˉ2=x2+ε,pˉ2=p2,\begin{array}{ll} \bar{x}_1=x_1+\varepsilon, & \bar{p}_1=p_1, \\ \bar{x}_2=x_2+\varepsilon, & \bar{p}_2=p_2, \end{array}

which is precisely a spatial transformation of the whole system by an amount ε\varepsilon.

 ~\tag*{$\blacksquare$}

Exercise 2.8.2 Verify that the infinitesimal transformation generated by any dynamical variable gg is a canonical transformation. (Hint: Work, as usual, to first order in ε\varepsilon.)

Solution. If the coordinates and momenta after the infinitesimal transformation generated by dynamical variable gg becomes

qˉi=qi+εgpipˉj=pjεgqj\begin{aligned} \bar{q}_{i}&=q_{i}+\varepsilon\frac{\partial g}{\partial p_{i}}\\ \bar{p}_{j}&=p_{j}-\varepsilon\frac{\partial g}{\partial q_{j}} \end{aligned}

Then the Poisson brackets between new coordinate and momentum is

{qˉi,pˉj}=k(qˉiqkpˉjpkqˉipkpˉjqk)=k[(δik+ε2gpiqk)(δjk+ε2gqjpk)ε2gpipkε2gqiqk]=k[δikδjk+ε2gpiqkδjkδikε2gqjpk+O(ε2)]=δij+ε2gpiqjε2gqjpi+O(ε2)=δij+O(ε2)δij\begin{aligned} \{\bar{q}_{i},\bar{p}_{j}\}&=\sum\limits_{k}\left(\frac{\partial \bar{q}_{i}}{\partial q_{k}}\frac{\partial \bar{p}_{j}}{\partial p_{k}}-\frac{\partial \bar{q}_{i}}{\partial p_{k}}\frac{\partial \bar{p}_{j}}{\partial q_{k}}\right)\\ &=\sum\limits_{k}\left[\left(\delta_{ik}+\varepsilon\frac{\partial^{2}g}{\partial p_{i}\partial q_{k}}\right)\left(\delta_{jk}+\varepsilon\frac{\partial^{2}g}{\partial q_{j}\partial p_{k}}\right)-\varepsilon\frac{\partial^{2}g}{\partial p_{i}\partial p_{k}}\cdot\varepsilon\frac{\partial^{2}g}{\partial q_{i}\partial q_{k}}\right]\\ &=\sum\limits_{k}\left[\delta_{ik}\delta_{jk}+\varepsilon\frac{\partial^{2}g}{\partial p_{i}\partial q_{k}}\cdot\delta_{jk}-\delta_{ik}\cdot\varepsilon\frac{\partial^{2}g}{\partial q_{j}\partial p_{k}}+\mathcal{O}(\varepsilon^{2})\right]\\ &=\delta_{ij}+\varepsilon\frac{\partial^{2}g}{\partial p_{i}\partial q_{j}}-\varepsilon\frac{\partial^{2}g}{\partial q_{j}\partial p_{i}}+\mathcal{O}(\varepsilon^{2})\\ &=\delta_{ij}+\mathcal{O}(\varepsilon^{2})\\ &\approx \delta_{ij} \end{aligned}

Therefore, the infinitesimal transformation generated by any dynamical variable gg is a canonical transformation.

 ~\tag*{$\blacksquare$}

Exercise 2.8.3 Consider

H=px2+py22m+12mω2(x2+y2)\mathscr{H}=\frac{p_x^2+p_y^2}{2 m}+\frac{1}{2} m \omega^2\left(x^2+y^2\right)

whose invariance under the rotation of the coordinates and momenta leads to the conservation of lzl_z. But H\mathscr{H} is also invariant under the rotation of \textit{just the coordinates}. Verify that this is a \textit{noncanonical} transformation. Convince yourself that in this case it is not possible to write δH\delta \mathscr{H} as ε{H,g}\varepsilon\{\mathscr{H}, g\} for any gg, i.e., that no conservation law follows.

Solution. Rotation of just the coordinates:

{xˉ=xcosθysinθyˉ=xsinθ+ycosθ{pˉx=pxpˉy=py\left\{ \begin{aligned} \bar{x}=x\cos\theta-y\sin\theta\\ \bar{y}=x\sin\theta+y\cos\theta \end{aligned} \right. \qquad \left\{ \begin{aligned} \bar{p}_{x}=p_{x}\\ \bar{p}_{y}=p_{y} \end{aligned} \right.

Then the Poisson brackets are

{xˉ,yˉ}=xˉxyˉpxxˉpxyˉx+xˉyyˉpyxˉpyyˉy=0{pˉx,pˉy}={px,py}=0{xˉ,pˉx}=xˉxpˉxpxxˉpxpˉxx+xˉypˉxpyxˉpypˉxy=cosθ1{xˉ,pˉy}=xˉxpˉypxxˉpxpˉyx+xˉypˉypyxˉpypˉyy=sinθ0{yˉ,pˉx}=yˉxpˉxpxyˉpxpˉxx+yˉypˉxpyyˉpypˉxy=sinθ0{yˉ,pˉy}=yˉxpˉypxyˉpxpˉyx+yˉypˉypyyˉpypˉyy=cosθ1\begin{aligned} \{\bar{x},\bar{y}\}&=\frac{\partial \bar{x}}{\partial x}\frac{\partial \bar{y}}{\partial p_{x}}-\frac{\partial \bar{x}}{\partial p_{x}}\frac{\partial \bar{y}}{\partial x}+\frac{\partial \bar{x}}{\partial y}\frac{\partial \bar{y}}{\partial p_{y}}-\frac{\partial \bar{x}}{\partial p_{y}}\frac{\partial \bar{y}}{\partial y}=0\\ \{\bar{p}_{x},\bar{p}_{y}\}&=\{p_{x},p_{y}\}=0\\ \{\bar{x},\bar{p}_{x}\}&=\frac{\partial \bar{x}}{\partial x}\frac{\partial \bar{p}_{x}}{\partial p_{x}}-\frac{\partial \bar{x}}{\partial p_{x}}\frac{\partial \bar{p}_{x}}{\partial x}+\frac{\partial \bar{x}}{\partial y}\frac{\partial \bar{p}_{x}}{\partial p_{y}}-\frac{\partial \bar{x}}{\partial p_{y}}\frac{\partial \bar{p}_{x}}{\partial y}=\cos\theta\neq 1\\ \{\bar{x},\bar{p}_{y}\}&=\frac{\partial \bar{x}}{\partial x}\frac{\partial \bar{p}_{y}}{\partial p_{x}}-\frac{\partial \bar{x}}{\partial p_{x}}\frac{\partial \bar{p}_{y}}{\partial x}+\frac{\partial \bar{x}}{\partial y}\frac{\partial \bar{p}_{y}}{\partial p_{y}}-\frac{\partial \bar{x}}{\partial p_{y}}\frac{\partial \bar{p}_{y}}{\partial y}=-\sin\theta\neq 0\\ \{\bar{y},\bar{p}_{x}\}&=\frac{\partial \bar{y}}{\partial x}\frac{\partial \bar{p}_{x}}{\partial p_{x}}-\frac{\partial \bar{y}}{\partial p_{x}}\frac{\partial \bar{p}_{x}}{\partial x}+\frac{\partial \bar{y}}{\partial y}\frac{\partial \bar{p}_{x}}{\partial p_{y}}-\frac{\partial \bar{y}}{\partial p_{y}}\frac{\partial \bar{p}_{x}}{\partial y}=\sin\theta\neq 0\\ \{\bar{y},\bar{p}_{y}\}&=\frac{\partial \bar{y}}{\partial x}\frac{\partial \bar{p}_{y}}{\partial p_{x}}-\frac{\partial \bar{y}}{\partial p_{x}}\frac{\partial \bar{p}_{y}}{\partial x}+\frac{\partial \bar{y}}{\partial y}\frac{\partial \bar{p}_{y}}{\partial p_{y}}-\frac{\partial \bar{y}}{\partial p_{y}}\frac{\partial \bar{p}_{y}}{\partial y}=\cos\theta\neq 1\\ \end{aligned}

Thus, rotation of just the coordinates is not a canonical transformation.

If δH=ε{H,g}=ε(HxgpxHpxgx+HygpyHpygy)\delta \mathscr{H}=\varepsilon\{\mathscr{H},g\}=\varepsilon\left(\frac{\partial \mathscr{H}}{\partial x}\frac{\partial g}{\partial p_{x}}-\frac{\partial \mathscr{H}}{\partial p_{x}}\frac{\partial g}{\partial x}+\frac{\partial \mathscr{H}}{\partial y}\frac{\partial g}{\partial p_{y}}-\frac{\partial \mathscr{H}}{\partial p_{y}}\frac{\partial g}{\partial y}\right), we have

δx=εgpxδpx=εgx,δy=εgpyδpy=εgy.\begin{array}{lll} &\delta x=\varepsilon\dfrac{\partial g}{\partial p_{x}}\qquad &\delta p_{x}=-\varepsilon\dfrac{\partial g}{\partial x},\\ &\delta y=\varepsilon\dfrac{\partial g}{\partial p_{y}}\qquad &\delta p_{y}=-\varepsilon\dfrac{\partial g}{\partial y}. \end{array}

which means that

{xˉ=x+εgpxyˉ=y+εgpy{pˉx=pxεgxpˉy=pyεgy\left\{\begin{aligned} \bar{x}&=x+\varepsilon\frac{\partial g}{\partial p_{x}}\\ \bar{y}&=y+\varepsilon\frac{\partial g}{\partial p_{y}} \end{aligned}\right. \qquad \left\{\begin{aligned} \bar{p}_{x}&=p_{x}-\varepsilon\frac{\partial g}{\partial x}\\ \bar{p}_{y}&=p_{y}-\varepsilon\frac{\partial g}{\partial y} \end{aligned}\right.

According to last exercise, this is a canonical transformation. Therefore, there doesn't exists any gg, such that δH=ε{H,g}\delta \mathscr{H}=\varepsilon\{\mathscr{H},g\}.

 ~\tag*{$\blacksquare$}

Exercise 2.8.4 Consider H=12p2+12x2\mathscr{H}=\frac{1}{2} p^2+\frac{1}{2} x^2, which is invariant under infinitesimal rotations in phase space (the xpx-p plane). Find the generator of this transformation (after verifying that it is canonical). (You could have guessed the answer based on Exercise 2.5.2.).

Solution. Consider a one-dimensitonal system with

H=12(p2+x2)\mathscr{H}=\frac{1}{2}(p^{2}+x^{2})

and perform a infinitesimal rotation in phase space xpx-p plane:

δx=εpδp=εx\begin{aligned} \delta x&=\varepsilon p\\ \delta p&=-\varepsilon x \end{aligned}

This is a canonical transformation since

{xˉ,pˉ}={x,p}+ε{δx,p}+ε{x,δp}+O(ε2)={x,p}=1\begin{aligned} \{\bar{x},\bar{p}\}&=\{x,p\}+\varepsilon\{\delta x,p\}+\varepsilon\{x,\delta p\}+\mathcal{O}(\varepsilon^{2})\\ &=\{x,p\}\\ &=1 \end{aligned}

If g(x,p)g(x,p) is the generator

δx=ε{x,g}=εgp=εpgp=pδp=ε{p,g}=εgx=εxgx=x\begin{aligned} \delta x&=\varepsilon\{x,g\}=\varepsilon\frac{\partial g}{\partial p}=\varepsilon p \Rightarrow \frac{\partial g}{\partial p}=p\\ \delta p&=\varepsilon\{p,g\}=-\varepsilon\frac{\partial g}{\partial x}=-\varepsilon x\Rightarrow\frac{\partial g}{\partial x}=x \end{aligned}

The solution of these two equations is

g(x,p)=12(p2+x2)+Cg(x,p)=\frac{1}{2}(p^{2}+x^{2})+C

where CC is a constant of integration. The equality is just the Hamiltonian itself.

In fact, the canonical transformation is just the time evolution with θ=t\theta=t.

 ~\tag*{$\blacksquare$}

Exercise 2.8.5 Why is it that a noncanonical transformation that leaves H\mathscr{H} invariant does not map a solution into another? Or, in view of the discussions on consequence II, why is it that an experiment and its transformed version do not give the same result when the transformation that leaves H\mathscr{H} invariant is not canonical? It is best to consider an example. Consider the potential given in Exercise 2.8.3. Suppose I release a particle at (x=a,y=0)(x=a, y=0) with (px=b,py=0)\left(p_x=b, p_y=0\right) and you release one in the transformed state in which (x=0,y=a)(x=0, y=a) and (px=b,py=0)\left(p_x=b, p_y=0\right), i.e., you rotate the coordinates but not the momenta. This is a noncanonical transformation that leaves H\mathscr{H} invariant. Convince yourself that at later times the states of the two particles are not related by the same transformation. Try to understand what goes wrong in the general case.

Solution. If the Hamiltonian is invariant under a regular canonical transformation and we can find a generator gg such that an infinitesimal version of this transformation is given by

qˉi=qi+εgpiqi+δqipˉi=piεgqipi+δpi\begin{aligned} \bar{q}_i & =q_i+\varepsilon \frac{\partial g}{\partial p_i} \equiv q_i+\delta q_i \\ \bar{p}_i & =p_i-\varepsilon \frac{\partial g}{\partial q_i} \equiv p_i+\delta p_i \end{aligned}

then gg is conserved.

If we are dealing with a finite regular canonical transformation where we go from (q,p)(qˉ,pˉ)(q, p) \rightarrow(\bar{q}, \bar{p}), and the Hamiltonian is invariant under this transformation, then it turns out that if a trajectory (q(t),p(t))(q(t), p(t)) satisfies Hamilton's equations of motion:

Hpi=q˙iHqi=p˙i\begin{aligned} \frac{\partial H}{\partial p_i} & =\dot{q}_i \\ -\frac{\partial H}{\partial q_i} & =\dot{p}_i \end{aligned}

then the trajectory obtained by transforming every point in the original trajectory (q(t),p(t))(q(t), p(t)) to the barred system (qˉ(t),pˉ(t))(\bar{q}(t), \bar{p}(t)) is also a solution of Hamilton's equations in the sense that

Hpˉi=qˉ˙iHqˉi=pˉ˙i\begin{align} \frac{\partial H}{\partial \bar{p}_i} & =\dot{\bar{q}}_i \tag{2.4}\\ -\frac{\partial H}{\partial \bar{q}_i} & =\dot{\bar{p}}_i\tag{2.5} \end{align}

The proof of this is a bit subtle, but goes as follows. To begin, review the derivation of the conditions for a transformation to be canonical. This derivation applied to a passive transformation, in which the two sets of parameters (q,p)(qˉ,pˉ)(q, p) \rightarrow(\bar{q}, \bar{p}) refer to the same point in phase space. The transformation we're considering here is an active transformation, in which (q,p)(qˉ,pˉ)(q, p) \rightarrow(\bar{q}, \bar{p}) actually moves the point in phase space. The original derivation (for passive transformations) relied on the fact that the numerical value of the Hamiltonian is the same in both coordinate systems, since both (q,p)(q, p) and (qˉ,pˉ)(\bar{q}, \bar{p}) refer to the same point in phase space. However, for our active transformation, we're assuming that the Hamiltonian is invariant under the transformation, that is H(qˉ,pˉ)=H(q,p)H(\bar{q}, \bar{p})=H(q, p), where (q,p)(q, p) and (qˉ,pˉ)(\bar{q}, \bar{p}) now refer to different points in phase space. Since the assumption that the Hamiltonian satisfies H(qˉ,pˉ)=H(q,p)H(\bar{q}, \bar{p})=H(q, p) was all that we used in the original derivation, the same derivation works both for passive transformations (always) and for active transformations (if the Hamiltonian is invariant under the active transformation). We therefore end up with the equations

qˉ˙j=kHqˉk{qˉj,qˉk}+kHpˉk{qˉj,pˉk}pˉ˙j=kHqˉk{pˉj,qˉk}+kHpˉk{pˉj,pˉk}\begin{align} \dot{\bar{q}}_j&=\sum_k \frac{\partial H}{\partial \bar{q}_k}\left\{\bar{q}_j, \bar{q}_k\right\}+\sum_k \frac{\partial H}{\partial \bar{p}_k}\left\{\bar{q}_j, \bar{p}_k\right\} \tag{2.6}\\ \dot{\bar{p}}_j&=\sum_k \frac{\partial H}{\partial \bar{q}_k}\left\{\bar{p}_j, \bar{q}_k\right\}+\sum_k \frac{\partial H}{\partial \bar{p}_k}\left\{\bar{p}_j, \bar{p}_k\right\}\tag{2.7} \end{align}

Since the transformation is specified to be canonical, the conditions on the Poisson brackets apply here:

{qˉj,qˉk}={pˉj,pˉk}=0{qˉj,pˉk}=δjk\begin{align} & \left\{\bar{q}_j, \bar{q}_k\right\}=\left\{\bar{p}_j, \bar{p}_k\right\}=0 \tag{2.8}\\ & \left\{\bar{q}_j, \bar{p}_k\right\}=\delta_{j k}\tag{2.9} \end{align}

The result is that the transformed trajectory also satisfies Hamilton's equations (2.4) and (2.5).

We can now revisit the 2-d harmonic oscillator to show that a noncanonical transformation violates these results. The Hamiltonian is

H=12m(px2+py2)+12mω2(x2+y2)H=\frac{1}{2 m}\left(p_x^2+p_y^2\right)+\frac{1}{2} m \omega^2\left(x^2+y^2\right)

and we consider the transformation where we rotate the coordinates but not the momenta. The transformation is

xˉ=xcosθysinθyˉ=xsinθ+ycosθpˉx=pxpˉy=py\begin{aligned} \bar{x} & =x \cos \theta-y \sin \theta \\ \bar{y} & =x \sin \theta+y \cos \theta \\ \bar{p}_x & =p_x \\ \bar{p}_y & =p_y \end{aligned}

As we've seen, this is a noncanonical transformation. To see what happens, we'll consider the initial conditions

x(0)=apx(0)=by(0)=py(0)=0\begin{aligned} x(0) & =a \\ p_x(0) & =b \\ y(0) & =p_y(0)=0 \end{aligned}

The mass is started off at a point on the xx axis with a momentum only in the xx direction. In this case, the mass behaves like a one-dimensional harmonic oscillator, moving along the xx axis only. To be precise, we can work out Hamilton's equations of motion:

p˙x=Hx=mω2xx˙=Hpx=pxm\begin{align} \dot{p}_x & =-\frac{\partial H}{\partial x}=-m \omega^2 x \tag{2.10}\\ \dot{x} & =\frac{\partial H}{\partial p_x}=\frac{p_x}{m}\tag{2.11} \end{align}

The equations for yy and pyp_y are the same, with xx replaced by yy everywhere. We can solve these ODEs in the usual way, by differentiating the first one and substituting the second one into the first to get

p¨x=mω2x˙=ω2px\ddot{p}_x=-m \omega^2 \dot{x}=-\omega^2 p_x

This has the general solution

px(t)=Acosωt+Bsinωtp_x(t)=A \cos \omega t+B \sin \omega t

We can do the same for xx and get

x(t)=Ccosωt+Dsinωtx(t)=C \cos \omega t+D \sin \omega t

Applying the initial conditions, we get

px(0)=A=bx(0)=C=a\begin{aligned} p_x(0) & =A=b \\ x(0) & =C=a \end{aligned}

Plugging these into the equations of motion (2.10) and (2.11) and solving for BB and DD we get the final solution

px(t)=bcosωtmωasinωtx(t)=acosωt+bmωsinωty(t)=py(t)=0\begin{aligned} p_x(t) & =b \cos \omega t-m \omega a \sin \omega t \\ x(t) & =a \cos \omega t+\frac{b}{m \omega} \sin \omega t \\ y(t) & =p_y(t)=0 \end{aligned}

Now suppose we start off with x(0)=0x(0)=0, y(0)=ay(0)=a, px(0)=bp_x(0)=b and py(0)=0p_y(0)=0. That is, we have rotated the coordinates through π2\frac{\pi}{2}, but not the momenta. We now begin with the mass on the yy axis, but moving in the xx direction, so as time progresses, it will have components of momentum in both the xx and yy directions. Although it's fairly obvious that this motion will not be simply the motion in the first case rotated through π2\frac{\pi}{2}, let's go through the equations. By the same technique as above, we can solve the equations to get

px(t)=bcosωtpy(t)=mωasinωtx(t)=bmωsinωty(t)=acosωt\begin{aligned} p_x(t) & =b \cos \omega t \\ p_y(t) & =-m \omega a \sin \omega t \\ x(t) & =\frac{b}{m \omega} \sin \omega t \\ y(t) & =a \cos \omega t \end{aligned}

If we look at the system at, say, t=π2ωt=\frac{\pi}{2 \omega}, then cosωt=0\cos \omega t=0 and sinωt=1\sin \omega t=1. The mass that started off on the xx axis will be at position (x,y)=(bmω,0)(x, y)=\left(\frac{b}{m \omega}, 0\right) and so will the mass that started off on the yy axis. Since the two masses are in the same place, obviously one is not the rotated version of the other.

Another, probably easier, way to see this is that since the first mass moves only along the xx axis, if the rotated version of the trajectory was also to be a solution, the rotated trajectory would have to lie entirely along the yy axis, which is certainly not true for the mass that starts off on the yy axis, but with a momentum px0p_x \neq 0.

In the general case, if the transformation is noncanonical, then the Poisson brackets in (2.6) and (2.7) don't satisfy the conditions (2.8) and (2.9), with the result that Hamilton's equations aren't satisfied in the (qˉ,pˉ)(\bar{q}, \bar{p}) coordinates. (There may be a deeper, physical interpretation that I've missed, but from a mathematical point of view, that's what goes wrong.)

 ~\tag*{$\blacksquare$}

Exercise 2.8.6 Show that Scl/xf=p(tf)\partial S_{\mathrm{cl}} / \partial x_f=p\left(t_f\right).

Solution. The situation is as shown in the following diagram: trajectory

The two trajectories now take the same time, but in the modified trajectory, the particle moves a distance Δx\Delta x further. Since both paths take the same time, there is no extra contribution LΔt\mathscr{L}\Delta t. In this case η(t)>0\eta(t)>0, since the new (blue) curve x(t)x(t) is above the old (red) one xcl(t)x_{\mathrm{cl}}(t). The total variation in the action is now

δScl=Lx˙η(t)tf\delta S_{\mathrm{cl}}=\left.\frac{\partial \mathscr{L}}{\partial \dot{x}} \eta(t)\right|_{t_f}

At t=tft=t_{f}, η(tf)=Δx\eta(t_{f})=\Delta x, we get

δScl=Lx˙tfΔxSclxf=Lx˙tf=p(tf)\begin{aligned} \delta S_{\mathrm{cl}}&=\left.\frac{\partial \mathscr{L}}{\partial \dot{x}}\right|_{t_{f}}\Delta x\\ \frac{\partial S_{\mathrm{cl}}}{\partial x_{f}}&=\left.\frac{\partial \mathscr{L}}{\partial \dot{x}}\right|_{t_{f}}=p(t_{f}) \end{aligned}
 ~\tag*{$\blacksquare$}

Exercise 2.8.7 Consider the harmonic oscillator, for which the general solution is

x(t)=Acosωt+Bsinωt.x(t)=A \cos \omega t+B \sin \omega t .

Express the energy in terms of AA and BB and note that it does not depend on time. Now choose AA and BB such that x(0)=x1x(0)=x_1 and x(T)=x2x(T)=x_2. Write down the energy in terms of x1,x2x_1, x_2, and TT. Show that the action for the trajectory connecting x1x_1 and x2x_2 is

Scl(x1,x2,T)=mω2sinωT[(x12+x22)cosωT2x1x2]S_{\mathrm{cl}}\left(x_1, x_2, T\right)=\frac{m \omega}{2 \sin \omega T}\left[\left(x_1^2+x_2^2\right) \cos \omega T-2 x_1 x_2\right]

Verify that Scl/T=E\partial S_{\mathrm{cl}} / \partial T=-E.

Solution. For the case of the one-dimensional harmonic oscillator, we have

Scltf=H(tf)\frac{\partial S_{\mathrm{cl}}}{\partial t_f}=-H\left(t_f\right)

The general solution for the position is given by

x(t)=Acosωt+Bsinωtx˙(t)=Aωsinωt+Bωcosωt\begin{aligned} & x(t)=A \cos \omega t+B \sin \omega t \\ & \dot{x}(t)=-A \omega \sin \omega t+B \omega \cos \omega t \end{aligned}

The total energy is given by

E=12mx˙2+12mω2x2=m2((Aωsinωt+Bωcosωt)2+ω2(Acosωt+Bsinωt)2)=mω22(A2+B2)(2.12)\begin{aligned} E & =\frac{1}{2} m \dot{x}^2+\frac{1}{2} m \omega^2 x^2 \\ & =\frac{m}{2}\left((-A \omega \sin \omega t+B \omega \cos \omega t)^2+\omega^2(A \cos \omega t+B \sin \omega t)^2\right) \\ & =\frac{m \omega^2}{2}\left(A^2+B^2\right)\tag{2.12} \end{aligned}

where we just multiplied out the second line, cancelled terms and used cos2x+sin2x=1\cos ^2 x+\sin ^2 x=1.

To get the action, we need the Lagrangian:

L=TV=12mx˙212mω2x2=m2((Aωsinωt+Bωcosωt)2ω2(Acosωt+Bsinωt)2)=mω22[A2(sin2ωtcos2ωt)+B2(cos2ωtsin2ωt)4ABsinωtcosωt]=mω22((B2A2)cos2ωt2ABsin2ωt)\begin{aligned} L & =T-V \\ & =\frac{1}{2} m \dot{x}^2-\frac{1}{2} m \omega^2 x^2 \\ & =\frac{m}{2}\left((-A \omega \sin \omega t+B \omega \cos \omega t)^2-\omega^2(A \cos \omega t+B \sin \omega t)^2\right) \\ & =\frac{m \omega^2}{2}\left[A^2\left(\sin ^2 \omega t-\cos ^2 \omega t\right)+B^2\left(\cos ^2 \omega t-\sin ^2 \omega t\right)-4 A B \sin \omega t \cos \omega t\right] \\ & =\frac{m \omega^2}{2}\left(\left(B^2-A^2\right) \cos 2 \omega t-2 A B \sin 2 \omega t\right) \end{aligned}

The action for a trajectory from t=0t=0 to t=Tt=T is then

S=0TLdt=mω4[(B2A2)sin2ωt+2ABcos2ωt]0T=mω4[(B2A2)sin2ωT+2AB(cos2ωT1)]=mω2[(B2A2)sinωTcosωT+AB(cos2ωTsin2ωT1)]=mω2[(B2A2)sinωTcosωT2ABsin2ωT](2.13)\begin{aligned} S & =\int_0^T L d t \\ & =\frac{m \omega}{4}\left[\left(B^2-A^2\right) \sin 2 \omega t+2 A B \cos 2 \omega t\right]_0^T \\ & =\frac{m \omega}{4}\left[\left(B^2-A^2\right) \sin 2 \omega T+2 A B(\cos 2 \omega T-1)\right] \\ & =\frac{m \omega}{2}\left[\left(B^2-A^2\right) \sin \omega T \cos \omega T+A B\left(\cos ^2 \omega T-\sin ^2 \omega T-1\right)\right] \\ & =\frac{m \omega}{2}\left[\left(B^2-A^2\right) \sin \omega T \cos \omega T-2 A B \sin ^2 \omega T\right]\tag{2.13} \end{aligned}

To proceed further, we need to specify AA and BB, since these depend on the boundary conditions (that is, on where we require the mass to be at t=0t=0 and t=Tt=T ). If we require x(0)=x1x(0)=x_1 and x(T)=x2x(T)=x_2, then

A=x1x1cosωT+BsinωT=x2B=x2x1cosωTsinωT\begin{aligned} A & =x_1 \\ x_1 \cos \omega T+B \sin \omega T & =x_2 \\ B & =\frac{x_2-x_1 \cos \omega T}{\sin \omega T} \end{aligned}

Plugging these into (2.12) gives the energy as

E=mω22(x12+(x2x1cosωTsinωT)2)=mω22sin2ωT(x12+x222x1x2cosωT)\begin{aligned} E & =\frac{m \omega^2}{2}\left(x_1^2+\left(\frac{x_2-x_1 \cos \omega T}{\sin \omega T}\right)^2\right) \\ & =\frac{m \omega^2}{2 \sin ^2 \omega T}\left(x_1^2+x_2^2-2 x_1 x_2 \cos \omega T\right) \end{aligned}

Plugging AA and BB into (2.13), we get:

S=mω2sinωT[(x2x1cosωT)2cosωTx1sin2ωTcosωT2x1sin2ωT(x2x1cosωT)]=mω2sinωT[(x222x1x2cosωT+x12cos2ωT)cosωTx12sin2ωTcosωT                    2x1x2sin2ωT+2x1sin2ωTcosωT]=mω2sinωT[(x12+x22)cosωT2x1x2]\begin{aligned} S & =\frac{m \omega}{2 \sin\omega T}\left[\left(x_2-x_1 \cos\omega T\right)^2 \cos\omega T-x_1 \sin^2\omega T \cos\omega T-2 x_1 \sin^2\omega T\left(x_2-x_1 \cos\omega T\right)\right] \\ & =\frac{m \omega}{2 \sin\omega T}[\left(x_2^2-2 x_1 x_2 \cos\omega T+x_1^2 \cos^2\omega T\right) \cos\omega T-x_1^2 \sin^2\omega T \cos\omega T\\ &~~~~~~~~~~~~~~~~~~~~-2 x_1 x_2 \sin^2\omega T+2 x_1 \sin^2\omega T \cos\omega T] \\ & =\frac{m \omega}{2 \sin \omega T}\left[\left(x_1^2+x_2^2\right) \cos \omega T-2 x_1 x_2\right] \end{aligned}

Taking the derivative, we get

ST=mω2sin2ωT[ω(x12+x22)sin2ωT((x12+x22)cosωT2x1x2)ωcosωT]=mω22sin2ωT[(x12+x22)+2x1x2cosωT]=mω22sin2ωT(x12+x222x1x2cosωT)=E\begin{aligned} \frac{\partial S}{\partial T} & =\frac{m \omega}{2 \sin^2\omega T}\left[-\omega\left(x_1^2+x_2^2\right) \sin^2\omega T-\left(\left(x_1^2+x_2^2\right) \cos\omega T-2 x_1 x_2\right) \omega \cos\omega T\right] \\ & =\frac{m \omega^2}{2 \sin^2\omega T}\left[-\left(x_1^2+x_2^2\right)+2 x_1 x_2 \cos\omega T\right] \\ & =-\frac{m \omega^2}{2 \sin ^2 \omega T}\left(x_1^2+x_2^2-2 x_1 x_2 \cos \omega T\right) \\ & =-E \end{aligned}

Thus the result is verified for the harmonic oscillator.

 ~\tag*{$\blacksquare$}